A GUIDE TO WRITING DEVICE DRIVERS

JUNE 1984

COFYRIGHT (C) GRiD Systems Corporation
2935 Garcia Avenue

Mountain View, CA 94043

(415) 9461-4800

Manual Name: A BUIDE TO WRITING DEVICE DRIVERS -
Issue Date: June 1994

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means,
electronic, photocopy, recording, or otherwise without the prior
written consent of GRiD Systems Corporation.

The information in this document is subject to change without
notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKE ANY
EXPRESSED OR IMPLIED WARRANTY, INCLUDING, BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABRILITY, GUALITY, OR FITNESS FOR A
PARTICULAR PURPOSE. GRiD Systems Corporation has no obligation to
update or keep current the information contained in this document.

GRiD Systems Corporation®s software products are copyrighted by
and shall remain the property of GRiD Systems Corparation.

UNDER NO CIRCUMSTANCES WILL GRiD SYSTEMS CORPORATION BE I.IABLE FOR
ANY LOSS OR DAMAGES ARISING OUT OF THE USE OF THIS MANUAL.

The following are trademarks of GRiD Systems Corporation: GRiD,
Compass Computer.

The following is a trademark of Intel Corporation: Intel.

O

O

TABLE OF CONTENTS

ABOUT THIS BOOKoccvcvtanennscanacssesacaaranssns S Hoshaa0000C vii
CHAPTER 1: INTRCODUCTION TO DEVICEScrccrericnncnusrunannnuus 1-1
How Do Programs Communicate With Devices?cavevennaecee -1
Steps for Writing Device Programscc.eceseesroorccananens 1-2
FrintBrS toeesmsrccascnusnsnssssaaasanssosusosnnuasnanssnss 1-3

The Internal Modem c.eccicuescasransscaroseneasunsnraceaacnss 1-3

Other Serial Devices ..eieevecnancnnsccasasonnscsns 060000 1-3

Other GPIE DeviCes .orvvvraumnnsnnsne Ne000000g NeBO000000000 1-3
CHAPTER 2: ADDING AND REMOVING DEVICEScocaccvscansrcnccnn 2-1
The Active Device Table ...cvavaeccann B ANG Shonoono0dnoac00g 2-1
Activating and Deactivating Gateway Drivers and Shells 2-2
The ActivateDevice Procedure Call ..ecececeveeracsornsnens 272

The DeactivateDevice Procedure Lali ciiiccvercnannacnancas 2-4
Coding Examples ..cvuvenneactcasnsssennsnsranraanonnnassnaesns 2-4
Activating the Internal Modemccovcecnnnncnnnannanes: 2-5
Activating an Extra Portable FlOppy .ciseecenisnnccannaces 2-5
Deactivating the Modem ..cccineccrisiannencssnensnrncsanens 2=4
fctivating a Linked Driverisuevcoecrannacsnnnnnrosane 2=-&
CHAPTER 3: WRITING A SHELLcneccciavessnsmacsnananacsaranres 3-1
Why Use @ Shell? couicverrnssrcnansrsnasaasncasscaannansarnesse 3-1
Types Of ShEl1lE weriiineecensassenennunenaoncsesaannanscnnss 3-2
PriNTBrS svececissamuninanuserssnaanssasasuscctansosacnensn EE
(Ither GPIE DEVICBE +.veeicesnenrssasenassnabsunsnnssaatousns 3-2
(ther Serial DEVICES ueeesssrscceisassnsnasasssnsassosnsnsn =8

Contents

1ii

Writing or Modifying a Shell ABdoBooa00s Q000000 a00D00ao0 3-3

Shell Interface .rcveeercccisacancnsncssnasnns SBO000DG0000 34
Procedure Nam@ ceeeevsssnsnensosnse ABo0a0A00000 Soocooon SR
Parameter Block ..vciaieascusss 1BAAaGND000000D00000 AECBon 3-8
Overflow Black ..cvvncnscsernras 1800000B000000000 500000 &)

Gateway Driver Interface SROCE0GO0000000 ALEa00a0 3-7

Processing I/0 Requests «.cevesenas AR - 0000006000000 . 37
OsSetStatus ..icaanes UDAOBOGAI000000000 0 SANCA0N0000C000 3-8
OsBGetStatus v.ccereeicvitananncsansnassnanssanssasnsys R

Example Generic Serial Printer Shell o0a0on N0Oo000Dd 3-10
CHAPTER 4: PROGRAMMING THE MODEM GATEWAY DRIVERccuncuusn 4-1
Communication with the Medem ODriver - Program Overview 4-1
The OsSetStatus £all .iuieiesninevecsssnsansccaanctosussusnans 4-32
OsSetStatus MOdES c.cicuacnesrsnsonniescvsnasasanas 50000500000 4-3

Mode 0 - Return to Default Settings .cueeervarrcriovuanans 4-3

Mode 1 ~ Set Operating ValuBs .veivveverinsncncnsncnsannns 4-4

Mode 2 - Set Timeout Valuescveeencacnscoansraceannnan 4-4

Made 3 - Flush Receive FIFO Buffer ..eceecnecnesarcnasnana -5

Mode 4 - Set User Defined Receive FIFO Bufferiovcessas 4-5

Mode 5 ~ Disestablish Data Connection c.eviecoerarravsscnss 4-5

Mode &4 — Establish Data Connectioncceuvecnnnenansns 4-5

Mode 7 — Set Bits/Second .v.cencicivuinnannnes AGNO0bA0C00o0 4-5

Made 41 - Take Phone Off HOOK ...ccencevsransnrensaacanansas 4-4

Maode 42 — Put Phone On Hook ...veeerecaccaccisncacneaa annse 4-0

Mode 43 - Set Originate or ANSWEr (eceaeesessesnsans Saoaon Gl

Mode 44 - Dial Phone Numberceccucsenconmonsacsncannss 4-8

Mode 45 - Enable Voice Mode GOGOD000E00000000000000 4-8

Mode 44 - Disable Voice Mode c.cieecncncascnsarornascannnns 4-9

Mode 49 - Set Timeout Valuescccvneenn 00oaC000000000 4-9

Mode S0 — Set Speaker VolUmME c.iveveevacscnnassacnnss caene 4-F

The OsGetStatus Call .cccaeceasceraraccoccnnssasncsesnsnasnesanans 4-10
PRogramming the iModem Example ..ccicccesnccccannceranens weaes B4-12
Develop File for Modem Example-c-cciciaiainancncacsnsns 4-15
CHAPTER 5: PROGRAMMING THE SERIAL GATEWAY DRIVER......evuveennn o-1
Serial Communications Overview ...ceccecacecncve- SBAa0000000000 -1
The BRiID Serial Interface .sceseeececcsansonaane 00000000 enees 92

Serial Connectorcceececnvnaes tessiessensssuesssannns TR e

R5-423 and RS5-422 Compatibility loo0BOdo00eEa00000 5-3

Serial Ring Semaphare Hoa0UDa0oauDoanc T 5-3

Praogramming the Serial Gateway Driver From an Application ... 5-4
Programming the Serial Gateway Driver from a Shell -4
The OsSetStatus Call 1000000 00000000 JoO00DDOaoa00 noon Gl
DsSetStatus MoOdeS c.icvesssasosnrsesnsanananssa 00000000000 wewas 36

Mode 0 —~ Return to Default Settlngs 000000000 200000 S-6

Mode ! - Set Operating Values 50000oO0D00aT NA00Da0oC 5-7

Mode 2 - Set Timeout Values .sveienscee N00C0o00 1A0000008000 S5-7

iv Device Drivers

D

b

Mode 3 - Flush Receive FIFO Buffer coeiverecacccansassasss 5-8
Mode 4 - Set User Defined Receive FIFO Buffer H-B
Mode 5 - Disestablish Data Connection-c-ccevcaneanvoines 5-8
Mode & - Establich Data Connection .seveecccccavacannanrens a9-%
Mode 7 — Set Bits/Second cereesserorarasnossanssanssennann 57
Made 40 - Signals Required to Complete a Bo- Ta—Data 5-10
Mode 41 -~ Enable/Disable Ring Interrupt ...c.covieavaannnss a-10
The DsBetStatus Call .cieevroncccnececsnacnssnssnsssacannsnns 5-11
PRogramming the Serial Bateway Driver Evamplecveceaennn. =13
Develop File for Seri1al Example co.cuiieencararasnaicecssacsss 3-1E
CHAPTER &6: PROGRAMMING THE GPIB GATEWAY DRIVERc.e.0e é-1
GFPIB DVErview cceeeacscsscasannsnusanceanacsosnsnannssseninssons 4-1
GRiD GFPIE Gateway Driver Dvervieweieeiiviencaancnnacenann &2
Data Structuresve0ve- Cesdesstsasasesusasiussbcunnannane &3
Parameter Blockicieesecennnnetcasssusansusnasusnconas 6~3
Overflow Block for I/0 ReEqUasSts ceveecccnssrsvrccsesnnanes &-3
OVerflow Block far SetStatus Requestsceeeussearanns 64
Service Requestscieiesenrrsarcaornicncssssassasnannannnns &—3
Programming the GPIE Gateway Driver Examples 00Qo000s 4-a
fecet The DEVICE v.vrcerecteaoasnrosscacsnaarnosnsrasnanns b=5
Motify the Driver To Recognize Service Requests &7
Read from the Devicecueeseercsatcvaartoannuscnavanan 6-7
Write to the Device ..ceciieesrsassnrnencacnssascassonsnnnns 6-8
Generic GPIB Shell Example ...ivecircceacatsasnnncossnrnancvos &9
Generic GPIPB Shell with Service Requests Example 6~12
Generic GPIB Develop File ..iciecevncncanesacnnncensn 50000000 6-16
APPENDIX A: UNIVERSAL PRINTER LANGUAGE--csccavnoveenneraans a-1
APPENDIX B: ERROR CODESccvevercvscnsmnccuossansansnsncss .. B-1

Cantents v

FIGURES

Figure 1-1. Sample GRiD Computer System Qn00Go 800000000000
Figure i-2. Communicating With Devices 000000008 0aaa00g .
Figure 3-1. GRiD-0S Device I/0 Callscvvennnn EO00RD0000000 00o0ood
Figure 3-2. The Parameter Blockcecvnccnnen renesnessan o000 000
Figure 4-1. The Parameter Blackc.ceasceuveers aBo0acC NGB0 00000
Figure S-1. The Relationship Between DTE and DCE 00DC00C
Figure S-2 The Parameter Blockccvavecineens veasesuranmsna
Table 3-1. GRiD-05 calls and 1/0 Reguests 500000000800 0a00
Table 5-1. Handshaking Signals ..c.cocvevecvansncnenes Na0ooo Jooood
Table S-2. Serial Connector Pinout ...vevecoann He0a000cC A0CooCoacaad

vi

Device Drivers

5-2
-3

L4

ABOUT_THIS_BAOK

This manual explains how write to programs to control devices for computers
running the GRil Operating System (GRiD-0S}.

e e e e s o i Lo o e o e s e e e e ot Al

This manual assumes that you are an experienced PASCAL and PL/M
programmer and are familiar with the GRiD-0S devel opment
environment.

OTHER_BOOKS YOU HMAY NEED

I+ you have not programmed under GRiD-0S before, you may need to
refer to the follawing publications:

o GRiD-05 Reference manual for detailed information on operating

system calls, semaphores, and file 1/0.

o Program_Development Guide for information on how to run the
compilers and utilies and the GRiDDevelop pragram.

programming language.

About This Book

viil

EXAMPLE_PROGRAM_SOFTWARE @

This book contains example programs and develop files. Source
code for these is available on GRiD Central under Software
Subjects 3.1: Contributed Device Drivers.

Devitce Drivers viii

CHAPTER_i: INTRODUCTION_TO_DEVICES

WHAT_IS_A_DEVICE?

Here is a diagram of devices in a sample GRiD computer system:

,ﬁ@éﬁ GRiD Computer

L= = dg%%ﬂ o —

Hard Portabla Printetr

Disk Floppy ﬁ?ﬁ;gz

Figure 1-1. BSample GRiD Computer System

Printers, plotters, digitizers, videc disks, laser printers,
laboratory equipment, hard disks, floppy disks, bubble memory and
modems are all physical devices. These devices and cthers like them
can be controlled by GRiD software.

GRiD-0S supports three types of devices: those that have a serial
interface, those that have a GPIE (IEE-4BB) interface, and the
internal modem.

HOW_DBG_PROGRAMS COMMUNICATE WITH DEVICES?

Application programs make I/0 requests to the GRiD Operating System

Introduction 1-1

(GRiD-0S). GRiD-DS passes the request to a program called a shell
which passes the request on to a program called the gateway driver.
The gateway driver actually communicates with the device at the
hardware level. See Figure 1-2,

@

APFLICATION

GRID-0S
by

'N..h'
v \HH\“-~
4 SHELL
s
1z
/_,_,. . S~ i_,-f-'—":b"“\ /&
d d - /

{ SERIAL £ MODEM \“\ ; GPIB
GRATEWAY GATEMWAY GATEWAY
DRIVER [RIVER DRIVER

. . . S
-\-___r_,.;-" o
~ 1/ \NT
SERIAL INTERMAL GFIB
DEVICE HODEM DEVICE

Figure 1-2, Communicating With Devices

GRiD supplies three gateway drivers for device I1/0. The serial
gateway driver is in a file called Serial™Device™ and the modem
gateway driver is in a file called Modem™Device™. The GPIB gateway
driver is built into BRiD-05.

A shell is a program that allows applications to be device

~independent. You can put all device dependencies in the shell.
Then when a new device is used, the application need not be
modified.

STEPS_FOR_WRITING_DEVICE PROGRAMS

GRiD supplies all the software necessary to use many devices. To
use a device that is not supported by GRiD, or to use the internal
modem differently from GRiD applications, you may have to write some
software to control the device.

1-2 Device Drivers

PRINTERS

1.

THE INTERNAL

OTHER SERIAL

@

1.

If you don"t require tiext formatting commands or graphics, you
can use a generic printer shell. It you do reguire these
features, you should write a shell or modify & generic shell.
Writing a shell is covered in Chapter 3 - "Writing A Shell”. VYau
may also need to refer to Chapter S or Chapter & depending on
which interface your prister requires. If you write a shell, be
sure the final, linked file containing the shell has kind
“Printer™,

Use GriDManager®s CODE-C command to make the shell vour current
printer.

MODEM

. Include calls to the modem gateway driver in your application

program as described in Chapter 4 - "Frogramming The Modem
Gateway Driver“.

Activate Modem™Device™ from the command line or from your
program. See Chapter 2 - "Adding And Removing Devices" for more
information on this.

DEVICES

Include calls to the serial gateway driver in your application
program for all devices except printers; vou must use a shell for
printers. GSee Chapter 5 - "Programming the Serial Gateway
Driver®

Activate Serial™Device™ from the command line or from your
program. See Chapter 2 - "Adding And Removing Devices" for more
information on this.

UTHER GPIB DEVICES

1.

If it is acceptable to send all device dependent commands from
your application, then youw can use a generic BFIB shell. If you
want your application to be device independent, then you can
write or modify a shell. Refer to Chapter 3 - "Writing A Shell"
and Chapter & - "Programming The GFIB Gateway Driver".

Activate your shell from the command line or from your pirogram.

See Chapter 2 ~ "Adding And Remaving Devices" for more
information on this.

Introduction 1-3

O

©

CHAPTER_2: ADDING_AND_REMOVING_DEVICES

This chapter provides information on how to add and remove devices fram within
your program. You could also use the Activate and Deactivate command line
utilities to achieve the same results. These utilities are described in the

THE_ACTIVE DEVICE_TABLE

The Active Device Tahble, maintained hy GRiD-0S, is a table of
gateway drivers and device driver shells currently residing in
memory and available to be used by an application.

The table associates an ASCII string with the device or shell code;
this allows an application to attach to the driver by name instead
of by memory address.

You can add or remove (alsc referred to as activate and deactivate)
gateway drivers and driver shells from this table dynamically. This
allows you to save memory by keeping memory resident only those
drivers necessary at a given time.

You must activate the modem and serial gateway drivers before using
them. Because the GFIB gateway driver is in GRiD-0S5, it is not
necessary to activate it. However, you must activate a GPIB shell
before using it.

The active device table also allows you to associate a GPIB address
with a shell when it is added to the table. Because driver shells
are re-entrant, you can associate the same driver code with devices
that have different GFIR addresses. This allows you to avoid
duplicating code. For example, the same driver code can be used for
a Portable Floppy and an Extra Portable Floppy; only the GPIB
address need change.

Adding and Removing Devices 2-1

ACTIVATING AND DEACTIVATING GATEWAY DRIVERS AND SHELLS FROM YOUR PROGRAM

You can activate a gateway driver or shell from your program by

calling a procedure named ActivateDevice. Versions of the procedure (j“\
exist for bath the Compact and Large models of compilation; they can d
be found in files named Activate Compact™0OBJ™ and Activate

Large™0BJ™ on GRiD Central: Software Subjects 3.1 under Contributed

Device Drivers. The appropriate object file should be linked to the
program making the call.

These procedures use the GRiD-05 call OsAddDevice. Applications can
use OsAddDevice directly, but the interface to ActivateDevice is
simpler and easier to use.

A similar procedure named DeactivateDevice exists in each of the
object modules and can be used to remove a driver or shell from the
active device table.

THE ActivateDevice PROCEDURE CALL

You must provide information about the attributes of the driver or
shell code and its location, which can be one of the following:

o The driver or shell is in a file on secondary storage.

o The shell code has been linked to the program making the
Activatelevice call.

o The shell has already been activated and you want to use the same
code for another device.

The ActivateDevice procedure has the following PASCAL declaration.

NOTE: This definition is not in an include file. You must type the
declaration yourself in the interface specification of your PASCAL
program.

PUBLIC DeviceProcs;
PROCEDURE ActivatebDevice (path: StringPtr;
name: StringPtr;
VAR entryPoint: BYTES;
intAddr: BYTE;
attributes: WORD;
VAR error: WORD);

path path is a string used to indicate the location of the
gateway driver or shell to be activated. If you set
to the paEEEEEE“E?'the driver or shell file. If you
set bit 0 to 1, then set path to the device name

O

2-2 Device Drivers

(-) name
Ny

entryPoint

intAddr

attributes

including bhack guate (*}. If the drive- or she!l
code is linked to program {case two), then set path
to NIL. 1If path is not NIL, then the ActivateDevice
procedure autamatically frees the path StringPtr.

pameg ic a string that indicates the name that is to
be put into the active device table. MName should NOT
have a back gquote (*} in front of it. If you want
the title part of the path parameter toc be the name,
then set pame to NIL. If this parameter is not NIL,
then 1t is automatically freed.

I+ the shell is linked to the program, then set
entryvPoint to the shell main procedure name. If not,
then this parameter should be a de-referenced NIL
Pointer. If entrypoint has any value other than NIL,

then path is ignored.

ipntfAddr is the interface address (GPIB address}) of
the device. If the device is not a GFIB device, then
set intAddr to NULLBYTE (OFFh).

Individual b:its in this word represent attributes of
the device. The following bits are defined (bit 0 is

the least significant bit):

Description

Driver location bit,

IF ¢, then path is the pathname where

the driver or shell is located.

If 1, then path is the

name of an already activated device.

Visible bit.

0 — visible; 1 - invisible.

Invisible devices don’t appear on the file

form®s device list. For a device to appear cn the

device list it must be visible and a mass storage
device.

This bit should be set to zero.

Mass storage bit.

0 - the device is a non mass storage device.
1 - the device is a mass storage device.
This bit should be set to zero.

This bit should be set to zero.

This bit should be set to zero.

Adding and Removing Devices 2-3

HSearcnre blt.
0 - the device is searchable
i - the device is not software searchable

{For this to be valid the mass storage bit

must be 1) Sometimes GRiD-0S searches for files. (T"\
For example, if you select a tent file from a file
form, BRiD-08 will search for a file with a kind

“Run Text". It will only search in software

searchable mass storage devices.

@11 other bits in this word are reserved and should be set to

zZero.

Error

The ActivateDevice routine returns an error code in
this parameter.

THE DeactivateDevice PROCEDURE CALL

To deactivate a gateway driver or shell, call the DeactivateDevice
routine with the name of the device to deactivate; specify the same
name an application would use to attach to the driver.

Here is the PASCAL definition for DeactivateDevice. It should also
be typed in the interface specification.

PROCEDURE DeactivateDevice (pathName: StringPtr;

CODING_EXAMPLES

VAR ervor: WORD);

Four examples are shown:

o Activating the internal modem.

o Activating the Extra Portable Floppy.

o Deactivating the modem.

o Activating a linked driver.

2-4 Device Drivers

ACTIVATING THE INTERNAL MODEM

1t is assumed that that a file named Modem™Device™ exists in the
(“\} programs subject on a secondary storage device. The ActivateDevice
- routine will search each mass storage device until the file is
found.

PROCEDURE ActivateTheModem;

CONST
nullByte = Offh;
attribute = BOH;

VAR
error: WORD;
nullPtr: ~BYTE;

BEGIN
nullPtr := NIL;
ActivateDevice (NewStringlit (’Modem™Device™?’),
NIL,
nulliPtr~,
nullByte,
attribute,
error);
END;

& ACTIVATING AN EXTRA PORTABLE FLOPPY

This example assumes that the Portable Flappy has already been
activated.

PROCEDURE ActivateExtraFloppy;

CONST
floppyAddr = 7;
attribute = 9; { mass storage, visible, already activated 3}
VAR
error: WORD;
nullPtr: ~BYTE;

BEGIN

nullPtr := NIL;

fActivateDevice {NewStringlLit (’Portable Floppy’),
NewStringlit (’Extra Floppy’),
nullPtr~,
1 oppyAddr,
attribute,
error};

Adding and Removing Devices 2-

S

END;

DEACTIVATING THE MODEM

PROCEDURE DeactivateTheModem; e
VAR
error: WORD;
BEGIN
DeactivateDevice (MNewStringlit (° ‘Modem’}, error};
{ Remember the backquote!!! I
END;

ACTIVATING A LINKED DRIVER

It is assumed that a generic GPIB driver has been linked to this
program and that the OsDevice PROCEDURE has been declared PUBLIC in
the interface specification of this program.

PROCEDURE ActivateBGenericGPIB;

CONST
attribute = 80H;
Address = 2B;

VAR (:j

errar: WORD;
nullPtr: ~BYTE;

BEGIN
nullPtr := NIL;
ActivateDevice (NIL,
NewStringlLit (’GenericGPIB’},
DsDevice,
Address,
attribute,
error)}
END;

c

2-6 Device Drivers

CHAPTER_3: WRITING_A_SHELL

A shell is a program that GRiD-05 calls after an application program requests
device I/0. 8hells are usually written in the PL/M programming language.
Shells process the I/0 request and then pass the request to a gateway driver
which actually communicates with the device.

WHY_USE_A_SHELL?

Shells provide device independence by standardizing the interface to
the gateway drivers. Device independence is important because it
takes the burden of communicating to different devices away from the
applications programmer.

Shells translate generic commands from applications into
device-specific commands. For example, GRiDWRite includes commands
for formatting printed text. One such command is the boldface
command. However, different printers use different control
characters for boldface. Rather than requiring GRiDWrite to know
the boldface control characters for every printer, GRiDWrite uses a
generic printer language which is passed to the shell. The shell
then translates the generic boldface command into a printer specific
boldface command. In this way GRiDWrite can be used with a new
printer by simply creating a new shell rather than changing
GRiDWrite.

Writing a Shell 3-1

PRINTERS

@

For users not interested in text formatting commands or graphics,
generic printer shells are available for serial and GPIB printers.
They pass text as received from applications to the gateway driver.

1 text formatting commands or graphics are desired, you can modify
one of the generic shells. GRiD uses a Universal Printer Language
that the shell must interpret and translate intoc printer specific
commands. See Appendi» A for a description of the Universal Printer
Language.

Here are the generic printer shells available on GRiD Central under
Software Subjects 3.0 in the Contributed Programs subject:

MinimumSerial:
Protocel: None
Baud: 300
Assumes printer has at least a 128 byte internal buffer

GenericSerial ETX/ACK:

Protocol: ETX/ACK
Baud: 1200

Assumes printer has at least a 128 byte internal buffer (:::

GenericSerial XON/XOFF:
Protocol: XOMN/XOFF
Baud: 1200
Assumes printer has at least a 128 byte internal buffer

GenericGPIB:

Default GPIP address: 21

OTHER GPIB DEVICES

S
3~

2

If the device doesn’t require data translation, and i+t
device-specific commands can be done in the application, generic
GPIB shells are available for devices that use GPIE Service Reguests
and those that don’t., These shells simply pass requests from
applications to the GPID gateway driver without translating the
information intc device specific commands.

If the you need a device specific shell, one of the generic GPIB
shells can be modified.

C

Device Drivers

Lo

OTHER SERIAL DEVICES

It is generally not necessary to write or modify a shell for a new
serial device other than a serial printer. Instead, the serial
galeway driver can be programmed from the application as described

in Chapter 5.

An application performs device 1/0 by making calls to 6RiD-05. The
sequence of calls is shown in the following figure:

fittach - Detach

L 1

Open Close
| |

-
Head

Write

GetStatus
|
Jetdtatus

Figure 3-1., BRiD-0S Device 1/0 Calls

Writing a Shell

A
A

When BRiD-08 receives an 1/0 call, it passes an 1/0 request to the
shell. The correspondence between GRiD-0S calls and 1/0 requests is as

fol lows:

BRiD-DS Call 1/0 Reguest (:::
Activate = ddinitialize
0SAattach = ddAttach

0SOpen = ddOpen
0SRead = ddRead
OSWrite = ddWrite
056etStatus = ddBGetStatus
{JSSetStatus = ddSetStatus
0SClose = ddClose
0SDetach = ddDetach
Deactivate = ddDeactivate

Table 3-1. GRiD-0S calls and I/0 Requests

The 1/0 requests are actually constant numbers that are defined in the
PrinterDriver.Inc include file.

SHELL INTERFACE

A shell is written as a PROCEDURE in PL/M that accepts three C::
parameters:

OsDevice: PROCEDURE (request, pFarameters, pError) FUBLIC REENTRANT;

DECLARE request WORD,
pParamters POINTER,
pError POINTER;

Here is a discusion of the parameters passed to the shell:
request The 1/0 request number passed to the shell by GRiD-0S.

pParameters A POINTER to a parameter block containing information from
the application and GRiD-DS.

pError A PDINTER to a WORD where the shell can return an error
code toc the application.

3-4 Device Drivers

L4

Procedure Name

Parameter

The name of the procedure must be OsDevice.
will be linked to an assembly language module (JmpDev.Asm™DBJ™) that

enpects this name. The assembly language module serves as a main

This is because the shell

module for the shell; its only purpose is to provide a start address to

the linker.

Block

The parameter block hasz this format:

Parameter Elock

Correct. .

pBuffer

Data Buffer

position

lemath

mode

rimBuf

intRddr

Duverflow Block

pOverflow

Figure 3-2.

dataMode

EQSchar
secAddr

time0ut

The Parameter Block

Here is the PL/M declaration for the parameter block:

DECLARE ParamListType LITERALLY ?STRUCTURE (

pbuffer

connection
pBufffer
position
length
mode
numBuf
intAddr
pOverflow

SELECTOR,
POINTER,
DWORD,
WORD,
BYTE,
BYTE,
BYTE,
POINTER) "

Do not medify these parameters except as noted below.

Writing a Shell

A POINTER to the buffer specified by the application when

3-5

- length

intAddr

it made the GRiD-0S call. This buffer contains data for
ddRead and ddWrite requests or status information for
ddGetStatus and ddSetStatus requests.

The length of the buffer as set by GRiD-05 according to
the number of bytes reguested by the application; it is
updated by the gateway driver to reflect the actual number
of bytes transferred.

The GPIB address of the device with which the application

' wants to communicate. If the device is serial, this

pOverfiow

Overflow Block

parameter can be ignored.

A PDINTER to another STRUCTURE of parameters.

The format of the overflow block depends on the gateway driver called
and the request being passed to it. For all cases except when a
ddSetStatus is being passed to a gateway driver, the overflaw block
will have the following format: '

DECLARE OverFlowType LITERALLY *STRUCTURE (

dataMode
EDOSchar
sechddr
timeOut

tataMaode
EGSchar

secfddr

timeQut

BYTE,
BYTE,
BYTE,
WORD) *

The data transfer mode used in GPIB shells, A serial
shell can ignore this parameter.

The End Of String character used in GPIB shells. A serial
shell can ignore this parameter.

Not used.

timeQut is only used by the GPIB gateway driver. It is
the length of time the gateway driver should wait before
giving up on a request. This number is in milliseconds
i.e., a timeout duration of six seconds would be expressed

as 6000,

When a ddSetStatus request is being passed to a gateway driver, the
format of the overflow block varies for GPIB shells and serial shells.
For information on serial ddSetStatus, see Chapter 5. For information
on GPIB ddSetStatus, see Chapter 4.

3-6 Device Drivers

GATEWAY DRIVER INTERFACE

A shell communicates with a gateway driver with the 0SCallDriver call.

O

_—

The OsCallDriver call looks like thiss

OsCallDriver (pathName : BYTES;

level : Byte;

request : WORD;

paramlist : ParamListType;
error : WORD;

The pathname (formatted as a ShortString) of the gateway
driver. For a serial device, the pathname is ‘Serial.
For a GPIB device, the pathname is “GPIB.

A value of | specifies that this is a low-level driver
{for a mass storage device such as bubble memory, hard
disk, or floppy disk), a value of 0 specifies that it is a
file level driver {(for devices such as printers,
PhoneLink, serial devices, or non-disk GPIB devices!}.

A word defining the specific activity (such as open, read,
write}! that the gateway driver is to perform on the
device. This is the dd-request passed by the application
to the shell.

The parameter block specifying device characteristics.

The body of a typical shell, in outline form, looks like this:

pathiName
level
request
paramlist
iy
®
=y PROCESSING 1/0 REGUESTS
(4

Writing a Shell 3-7

—

IF request = ddInitialize THEN
Initialize any shell variables. If necessary, send initialization
commands to the device using OsCallDriver and a ddWrite request.

IF regquest = ddRead THEN (:f\
Read from the device through the gateway driver and put data in 4

the application’®s buffer. The shell should also translate data
from the device at this point if necessary.

IF request = ddWrite THEN
Write to the device through the gateway driver from the
application’s buffer. The shell should should translate data into
a device-specific format at this point if necessary.

IF reguest = ddSetStatus THEN
Set shell characteristics. A typical use of the OsSetStatus call
is to allow the application to adjust the device timeout. This
ddSetStatus request resulting from OsSetStatus is not passed on to
the gateway driver. However, the shell can make separate
ddSetStatus requests to the gateway driver to set gateway
characteristics as follows:

o0 Service Request Initialization or Selective Device Clear when
using the BPIB gateway as desgribed in Chapter 6.

o A serial printer shell can set operating characteristics of the
serial gateway driver like baud rates, stop bits, etc. In this
case, the shell should set up an overflow block such as the
ones used for OsSetStatus discussed in Chapter S and pass this
block and the ddSetStatus request to the serial gateway driver. (:::

IF request = ddBetStatus THEN
Pass shell status back to the application. This request is not
passed on to the gateway driver.

IF request = ddOpen,ddAttach,ddClose,ddDetach,ddDeactivate THEN
Do nothing.

IF request = any other request THEN
Return error: RequestNotSupported

psSetStatus

You can use OsSetStatus to pass information to the shell from an
application. The modem and serial gateway drivers are examples of
sophisticated OsSetStatus implementations. In those drivers, you can
pass a number of parameters, including rate of transmission, stop bits,
etc. In the example at the end of this section, OsSetStatus is used
only to set the device timeout. In that example, the (OsSetStatus
buffer has the following PL/M declaration:

DCL SetStatusType LIT *STRUCTURE

3-8 Device Drivers

(setStatMnde BYTE,
setMewTime WORD)';

OsGetStatus

The shell should meet the GRiD-08 minimum specifications for

OcGetStatus but can add user-defined fields.

See the GRiD-0S_Reference

Writing & Shell 3-9

XAMPLE _GENERIC SERIAL _PRINTER_SHELL

This generic serial printer shell has a simple SetStatus function to

allow an application to adjust the device timeout. This shell uses the (:::
serial defaults for baud rates, stop bits, etc.j the shell could be '
modified to make ddSetStatus requests to the serial gateway driver.

$NOLIST LARGE OPTIMIZE(3)

/% Generic Serial Read and Write Shell
Default TimeQut: 5 seconds
X/

GenericSerialDriver: DO;
$INCLUDE {*w0°Incs‘Plmlit.'Inc™Text™)

/% Include declarations for ParamListType, etc. ¥/
$INCLUDE (PrinterDriver.Inc™Text™)

/% Initialize the parameters in the Overflow Block %/
DCL overflow OverflowType INITIAL (OFFH, OFFH,
OFFH, SO000H);

OsDevice: PROCEDURE (request, pParams, pError}) PUB REENT;
DCL reguest WORD;
DCL pParams PTR;
DCL pError PTR;

DCL error BASED pError WORD; (::
DCL params BASED pParams ParamListType;

DCL pSetStatus PTR;

DCL setStatus BASED pSetStatus SetStatusType;
DCL StatusBlock SetStatusType;

DCL getStatus GetStatusType;

DClL. getStatusiength WORD;

errar = 0;
IF request = ddWrite THEN

IF params.length > O THEN
Do;
params.pOverflow = doverflow;
CALL OSCALlLdriver (8{(3,’*Serial’), 0, DOUBLE {(ddWrite},
dparams, Jerror);
END;
ELSE
IF reguest = ddRead THEN
IF params.length > O THEN
DO;

3-10¢ Device Drivers

params.plverfiow = Joverflow;

CALL OSCALLDriver

END;
ELSE

IF request = ddGetStatus THEN

Da;

(2(3,” “Serial’),0,DOUBLE (ddRead),
Iparams, Jerror) ;

/% Device i= OPEN, update Access allowed, all other © X/
CALL SETB (0, 3IgetStatus, SIZE (getStatus)};
getStatus. open
getStatus.access = 4;

IF params.length < SIZE {(getStatus)
THEM getStatuslLength = params.length;
ELSE getStatusiength =

= OFFH;

SI17E {(getStatus);

CALL MOVE (dgetStatus, params.pBuffer, getStatusbength);

END;
ELSE

I request = ddSetStatus THEN

DQO;

pSetStatug = params.pBuffer;

overflow.timeOut = setStatus.setNewTime;

END;
ELSE

/% Ignore other valid requests, return error if not valid ¥/

IF WDT {{request
{reguest
{request
{request
{reguest
{request
(request

[N | T L [|

dd0pen) ar
ddinitialize) OR
ddCl ose) OR
ddDetach} OR
ddAttach) R
ddTruncate) OR

ddDeactivate)} THEN

error = notSupported;

END;

END; /% Module %/

Writing a Shell

=11

CHAPTER_4: PROGRAMMING_THE MODEM_GATEWAY DRIVER

1f GRibTerm, GRiDVT10C, GRiD3101, BGRiDAccess, or GRiDManager do not satisfy
vour communication requirements, you'll need to write a program that sets the
modem cptions yourself.

GRiD provides a modem gateway driver called Modem™Device™, through which you
can control the modem and send and receive data.

The modem gateway driver supports voice made, where you can talk through the

BRiD handset and listen on the speaker, and data mode, where the madem
communicates with a remote modem.

COMMUNICATION WITH THE MODEM _DRIVER -~ PROGRAM OVERVIEW

To write a program that reads from and writes to the modem gateway
driver:

1. Add Modem“Device™ as an active device.
2. Attach to the modem using OsAttach with pathname = “Modem.
3. Open the modem using OsOpen.

4. Program desired operating characteristics (bits/sec, stop bits,
etc) using OsSetStatus as described in this chapter.

S. If you are originating the call, use OsSetStatus to dial a phone
number and to establish 2 connection. If you are answering, use
OsGetStatus to obtain an identification number for the ring
semaphore. The gateway driver signals the ring semaphore when it
detects an incoming call. You should wait for the signal using
OsWait, then use OsSetStatus to connect with the remote modem.

Programming the Modem Gateway Driver 4-1

&. Read from and write te the modem using OsRead and UOsWrite.
7. Close and detach the modem using OsClose and OsDetach.

8. Remove the modem from the active device table. (::}

o S S ., ., e i S S

The 0sSetStatus call has this PASCAL declaration:
PROCEDURE OsSetStatus (conn:WORD; VAR pBuffer:BYTES;
length:zWORD; YAR error:WORD);:
conn The connection number returned from an OsfAttach call.
pBuffer A pointer to a parameter block. The parameter block has a
mode byte followed by a varying number of parameter bytes.
See Figure 4--1.
length The length of the parameter block including the mode byte.

error A WORD where an error code is returned. You can examine
thiz word to determine if the call was successful.

4-2 Device Drivers

o/

The parameter black has thie format:

pout Fat

Figure 4-1.

OsSetStatus MODES

m::njr- t‘:'z:'i =

— ——

&
&
&

Fatrametear
Eutes

The Parameter Block

The follawing section describes the modes that can be used to
program the modem gateway driver.

MODE © — RETURN TO DEFAULT SETTINGS

A parameter block with mode byte =
the modem gateway driver to return to a default state:

Bits/Sec

Data Bits

Stop Bits

Parity

Connection Timeout
Character Timeout
Receive Rueue
Originate/Answer
Pial Tone Timeout
i sconnect Timeout

Default Value

None
30 Seconds
Forever
Internal
Automatic
1% Seconds
3.9 Seconds

Frogramming the Modem BGateway Driver

Mode To Change

JEE ST I S

0 and no parameter bytes causes

g=3

MODE 1 - SET DPERATING VALUES

n
-

Protocol Asynchronus

bits/char.
bits/char.
bits/char.
bits/char.

Bits/Char.

D~ O
1
o-y0

[B

Stop Bits = 1 stop bit
= 1.5 staop bits

- 2 stop bits

- MNone
- Even
0dd

- Mark
- Space

B R O
1

Parity

MODE 2 - SET TIMEOUT VALUES

CharTimeout ConnectTimelut

[]

CharTimeOut and ConnectTimeOut are WORD values.

CharTime0lut The number of milliseconds the gateway driver should
wait for a character before issuing a TimeOut error.
If you set CharTimeDut to zero, then the gatway
driver waits until the requested number of bytes are
available.

ConnectTimeOut The number of milliseconds the gateway driver should

wait for a handshake from the other modem after a
go-to-data (mode six) command.

4-4 Device Drivers

MODE 3 - FLUSH RECEIVE FIFO BUFFER

O ________

Mode 3 can be used to remove spurious characters fraom the receive
FIFO buffer.

MODE 4 - SET USER DEFINED RECEIVE FIFOD BUFFER

! 4 1 fifoPtr : fifolength '
1 1 1 1
1]] .]
fifoPtr A POINTER to an input buffer in the application
program.
fifoLength The length of the new buffer.

Use this mode when you want the gateway driver to use a larger input
buffer tharn the driver®s internal 32 character FIFD buffer to avoid
cverflow and loss of data. You should not access the new buffer
directly; but should use the OsRead call instead.

MODE 5 — DISESTABLISH DATA CONNECTION

Use mode 5 to exit data mode. VYoice mode will he entered if it has
been enabled with mode 45; otherwise an idle state will be entered.

Frogramming the Modem Gateway Driver 4=5

MODE & - ESTABLISH DATA CONNECTION

[P

Use mode & to go to data mode and attempt to handshake with the
other modem. I+ this does not happen within the cornection timeout
pericd {(specified in mode 27, a TimeOut errar will be returned. You
can determine the type of handshake with mode 43.

MODE 7 - SET BITS/SECOND

Speed

~

- 300 Bbits/Sec.

Speed = S
7 - 1200 Bits/Sec.

MODE 41 - TAKE PHONE OFF HOOK

Use mode 41 to connect to the phone line. The off-hook function is
also done automatically in mode 44.

MODE 42 - PUT PHONE ON HOOK

lse mode 42 to disconnect fram the phone line. You cannot recannect
to the phane line for a time called the disconnect delay. This
delay ensures that the phone is really hung up. The discannect

4-4 Device Drivers

delay can be set with mode 4%.

@

MODE 43 - SET ORIGINATE DR ANSWER

i i Originate |
i 43 ! ar :
: i Answer i

Driginate or Answer =

Automatic
Driginate
Answer
Ban®t Change

9]
i
2
2

33

Use mode 43 to control the type of handshake used in a mode &
command. If automatic is chosen, the gatewsy driver will use
originate mode if the phone has been dialed since the last off hook
command, else answer mode will be used.

Programming the Modem Gateway Driver 4=7

MODE 44 -

MODE 45 -

DIAL PHONE NUMBER

———]

? 44 1 Tone i Length

Mode 44 causes the modem gateway driver to dial a number. I+ the
phone is not off the hook (see mode 41}, then an off hook command is
automatically executed before dialing.

TouchTone 6 BOOLEAN that indicates if a touchtone or pulse
dialing is being used. Use TRUE for a touchtone
phone.

Length The length of the phone number that follows.

Phone Number The phone number to be dialed. The number should be

in ASCII form. The following characters are valid:

Character Interpretation
0-9 Same as on 3 phone
. One second delay
= Wait for-a dial tone
¥ Same as on a touchtone phone ;
Same as on a touchtone phone (::
space, parentheses, dash ignored

Spaces, parentheses and dashes can be used to make the number more
readable but are ignored by the gateway driver. However, they must
he included when determining the length parameter.

ENABLE VOICE MODE

Use mode 45 to enable voice mode. When voice mode is enabled, voice
mode will be entered when data mode is exited with mode 3.

4-8 Device Drivers

MODE 46 - DISABLE VOICE MODE

O ___________

1f voice mode is disabled, an idle state is entered when exiting
dats mode using mode I.

MODE 4% - SET TIMEOUT VALUES

49

1
PialTone Timeout | DisconnectTimelut
'

DialTane Timeoul and DisconnectTimeout are WORD values.

DialTone Timeout The number of milliseconds the gateway driver
should wait for a dial tone when a caret (*) is
encountered in a phone number. If this time is

T exceeded, a TimeOut error is returned.
&7

Disconnect TimeQut The number of milliseconds the gateway driver

should delay before allowing a recannection

(mode 41).
MODE 50 - SET SPEAKER VOILLUME
: ! i
! 50 i Volume |
! ! :
Volume = 0 - Speaker Off

235 - Maximum Volume

This mode lets you adjust the volume of the speaker.

Frogramming the Modem Gateway Driver 4-9

The 0OcBetStatus call obtains information about the current state of c:::
the modem gateway driver. This call is decscribed in the GRibE-0S
Reference Manual but the status record format differe for every

device. The status record for the modem gateway driver has this

farmat:

StatusType = RECORD

opent BOOLEAN;
access: BYTE;
seel: BYTE;

fileFosition: LONGINT;
numCharsInFifo: LONGINT;

syncDetect: BOOLEAN;
connection: BYTE:
usartStatus: BYTE;
mademStatus: BYTE;
RingSID: WORD;
END;
apen if the modem gatewéy is attached, this BOOLEAN is
TRUE.
access This BYTE is bit-mapped to indicate the type of

access allowed. It will always be set for read and
write access. See the GRiD-0S_Reference Manual for
a description of the bit-map.

i

seek This BYTE is always 0.
filePosition This LONGINT is always 0.

numCharsinFifo This LONGINT contains the number of characters
currently in the recieve buffer.

synchDetect This BOOLEAN is always FALSE.
connection This contains the current status of the connection:
cannection = 0 - No connection established
} - Off hook, voice mode.
2 - 0ff hook, data mode.
3 - Not used.
4 - Carrier was laost.

4-10 Device Drivers

usartStatus

modemStatus

ringSID

This byte allows you to determine

if errors have

occured on the interface. The usartStatus byte is

hit-mapped as follaws:
MSB LSB

76543210

* PFOU®N®x

where: P marks the bit position

.F marks the bit position
error.

0 marks the bit position
error.

U marks the bit position
error.

A one (1) ipn a bit position means
occured.

This byte allaws you to determine
certain signals on the interface.
byte is bit-mapped as follows:
MSE .S
746543210
*nwx Cx Dy
where: C marks the bit position
{(CTS)

D marks the bit positian
Detect

for parity errar.
for framing

foar overrun

for underrun

that errar has

the state of
The modemStatus

for Clear To Send

for Dial Taone

A one (1) in a bit positien indicates that signal

is active.

This WORD contains the ring semaphore
identification number. The semaphore will be
signaled when the ring indicator line is active.

FProgramming the Modem Gateway Driver =11

4-12

i s e L L e s e S S S S e A S

This is an example of a program that originates communication with a
remote modem. It does the necessary setup and then reads a
character from the modem and writes it back. It then does the steps
necessary to clean up.

NOTE: Although this program does not perform error checking after
GRiD-0S calls, you should include error checking in your code to
improve reliablity.

$DEBUG COMPACT NOLIST

MODULE Mains

$INCLUDE (*w0*incs*Common.inc™text™)
$INCLUDE (*wO‘incs‘*ConPas.inc™text™)
$INCLUDE ({*wQ‘incs‘0OsPasProcs.inc™text™)
$INCLUDE (‘*w0"incs‘0sPasTypes.inc™text™)
$INCLUDE (‘w0 incs*WindowProcs.ine™text™)
$INCLUDE (‘*wQ‘incs*WindowTypes.inc™text™)
$LIST

PRDOGRAM Main;

CONST deviceMame
tempNumber

"Modem’ 5
e ann1212%

TYPE NumberType = RECORD

mode: CHAR;
touchtone: BOOLEAN;
length: CHAR;
number: PACKED ARRAY [1..101 OF CHAR;
EnD;
VAR modemID: WORD;
ch: CHAR;
ParameterBlock: FACKED ARRAY [1..91 OF CHAR;
pathMame: PACKED ARRAY [1..71 OF CHAR;
reserved: Bytes
error: WORD;
Fhone: NumberType;
actual: INTEGER;
BEGIN
{———rirme——— attach to the modem -—- = -3
pathMame = deviceName;
pathNamel[1] := CHR(&); { Device name is & characters I
reserved = (;

mademID := DsAttach {(pathName, cldFilelode, reserved,
updatefccess, error);

{rmm e open the Modem - e 3

Device Drivers

DsOpen (modemID, 1, errarl;

(i now establish some appropriate Modem settings —-3
ParameterBlock{1l 1= CHR{1); { made byte }
FarameterBlock[2] = CHR(1); { async ¥
ParameterBlock[31 := CHR(B); { 8 data bits }
ParameterBlock{41 := CHR(3); { 2 stop bit ¥
Parameterblock[{31 := CHR(1); { even parity 2

OsSetStatus (modemlID, FarameterBlock, 3, erraori;

——————————— zet bits/sec
ParameterBlock[1]l := CHR(7}; ~ { mode byte %
ParameterBlaock[2] := CHR(S); { 300 Bits/Sec 2

OsSetStatus {(modemlD, ParameterBlock, 2, error);

——————————— turn the speaker up

ParameterBlock[11 := CHR(30); _ { mode byte }
ParameterBlock[2] := CHR(233); { volume byte }

OsSetStatus (modemill, ParameterBlock, 2, errar);

——————————— dial the number

Phone.mode := CHR{44); { mode byte >
Phone. touchtone := TRUE; { touchtone 2
Phaone.length := CHR(10); { # length 3
Phone.number := temphumber; { number b

OsSetStatus (modemID, Phone, 13, error};

----------- go to data mode ----
ParameterBlock{1ll := CHR{&}; { mode byte }

OsSetStatus (modemID, ParameterBlock, 1, error);

___________ turn the speaier off

ParameterBlock{1] := CHR(50); { mode byte }
ParameterBlock[21 := CHR(0}; { volume byte 3

OsSetStatus (modemlID, ParameterBlock, 2, error);

——————————— read a CHAR from the modem

actual := OsRead (modemlD, ch, 1, errar);

Programming the Modem Gateway Driver

up

-,a

v

4-13

[

{——————m——— write a CHAR to the modem

OsWrite {(modemID, ch, 1, errori; @
—

e N disestahlish data maode =-=- C 3
ParameterBlockil1l := CHR(S); { mode byte 3

DeSetStatus (modemlID, ParameterBlock, 1, errorl};

e S s put phone an hook =

o

ParameterBlock[11 := CHR(42); { mode byte

OsSetStatus {(modemlD, ParameterBlacl, 1, error);

{m———— e close the modem —- - =¥

OsCiose {(modemiD, error);

o

(- detach from the modem —-
OsDetach {(modemID,error);
OsExit (0};

END

4-14 Device Drivers

DEVELOP FILE FOR _MODEM EXAMPLE

tName: HModem Example
tPrefix: Example

:Sources:’
ModemExample.Pss

slistingss:
"wiLET
:0bjects:
v "0BJ *
:Controls Yes w/Debug:

:Link:

LEEUG

Link “w*0BJ *ModemExample.Pas™0BJ™, "w'Libs ‘CompactSystemCalls™Lib™
T0 MHodemExample™RUM™ BIND SEGSIZE (STACK (+1500)) NOPRINT

tTest:

ModemEyample
Deactivate ‘Hodem

:Debug:
bDebug ModemExample

:Command Line:
DevelopmentExecutive

:GridManager:
GribDHManager

Activate ‘*w'Programs Modem™Device™

Frogreamming the Modem Gateway Driver

4-15

CHAPTER_S: PROGRAMMING_THE SERIAL_GATEWAY DRIVER

SERIAL_COMMUNICATIONS OVERVIEW

This chapter assumes you are familiar with the RS-232C serial
cemmunications standard. However, a shart review of some relevant
concepts follows.

In the RS-232C interface, there are two kinds of communication
eguipment - Data Terminal Equipment (DTE) and Data Communicatiocn
Equipment (DCE). DTE generally are the source or destination of
communication such as terminals or computers. DCE are usually
devices that provide communication services, such as a meodem. See
Figure 3-1.

Fragramming the Serial Gateway Driver -

THE_GR

5-2

GRiD i -
Compater Modam (:::

OTE

DCE

F 9
h 4

5

l.'l,

,
:fﬁ Telephone Sustem
4

"

.
."'c

F S

BCE

h

OTE

Maden Computer

Figure 5-1. The Relationship Between DTE and DCE

The transfer of data between a DTE and-a DCE is cantrolled by

certain signals: 6::

Signal Directian

Request to Send (RTS) DTE teo DEE
{lear to Send (CTS) DCE to DTE
Data Terminal Ready (DTR) DTE to DCE
Data Set Ready (DSR) DCE to DTE
Data Carrier Detect (DCIV DCE to DTE
Ring Indicator {RI) DCE to DTE

Table S-i. Handshaking Signals

. o o s e e S s s e

The GRiD serial port provides an RS-232C compatible interface. The
computer has 2 serial connector (Canon 2DE195) an the rear which has

19 pins instead of the standard 25. The six pins not represented

are used for a secondary channel but few devices use this feature.

GRiD manufactures cahles f{model #5100) to provide a 19 pin to

standard 25 pin connector. C

The GRiD computer is wired as a DTE (Data Terminal Equipment).

Device Drivers

Therefore, special cables may need to be fabricated in orde
connect the compater directliv to other devices that are als
as DTE.

SERIAL CONNECTOR

The ser:al connectar has the following pinouk:

PIN FUNCTIOM In/But PIMN FUNCTION

1 Shield 2 TD

3 RuD In 4 RTS

3 CTS In® & DSk

7 iogic Gnd 8 Carrier Detect
9 TuD Reference Out 10 kxD Reference
11 TxC in 12 DTR

13 Ring Indicator In 14 -10v DC 2 100mA
13 TxC Reference Dut 16 * TxC/Speed Select
17 R:L Reference In 18 RxC
19 +i0V DE 3 130mA Out

NOTE: The voltage source circuits should be used only for testing.

Table 5-2. Serial Connector Pinout

RS-423 AND RS5-422 COMPATIBILITY

RS-423 and RS5-422 are extensions to RS-232 that allow highe
rates, greater dicstances between stations, and improved noi
immunity. Both standards specify that incoming signals sha
evaluated differentially. R5-422 further specifies that si
should be balanced. Balancing is a technique that requires
conductors per circuit but results in better performance.

The GRiD serial interface supports the RS5-423 standard and
of the RS-422 standard. RS-422 balanced lines are availabl

r to
o set up

In
Out
Out
Out
In

r signal
se

uld be

gnals
two

a subset
e for

TxD, RxD, TxC and RxC. RS-423 compatibility can be attained by

grounding the RxC and RxD reference lines.

SERIAL RING SEMAPHORE

Upon initialization, the serial gateway driver creates the
ring semaphore. The gateway driver signals this semaphore
the ring indicator circuit is active (if ring interrupts ar

serial
whenever
e

enabled). An application program can do an OsWait on the semaphore

and allow other processes to run while it is waiting for a

Programming the Serial Gateway Dri

ring

ver 5-3

indicator signal. VYou obtain the identification number for the
serial ring semaphaore using the OsGetStatus call.

PROGRAMMING_THE_SERIAL GATEWAY DRIVER FROM AN _APPLIEATION

1. Add Serial~Device™ as an active device.

2. Attach to the serial gateway driver using OsAttach with filename
= "Serial.

3. Open the serial gateway driver using UsOpen.

4, Program desired operating characteristics (bits/sec, stop bits,
etec) using OsSetStatus.

5. Use DsSetStatus to establish a connection with the other device.

&. Read from and write to the serial gateway driver using Oskead and
Oskirite.

7. Close and detach the serial gateway driver using OsClase and
OsDetach.

8. Remave the serial gateway driver from the active device table.

PROGRAMMING_THE_SERIAL_GATEWAY DRIVER_FROM_A_SHELL

If you are writing a serial printer shell, you should follow the
steps outlined in Chapter 3 with the foliowing additions:

a 1In the ddlnitialize section of the shell, the shell should add
serial to the list of active devices as covered in Chapter 2.

@ In the ddOpen section of the shell, the shell can make ddRequests
to the serial gateway driver using OsCallbDriver to program
gperating characteristics and to establish a data connection. In
this case, the overflow block would have the same format as the
OsSetStatus buffer covered in this chapter.

o In the ddDeactivate section of the shell, the shell should remove
serial from the list of active devices as covered in Chapter 2.

-4 Device Drivers

THE OsSetStatus CALL

The 0sSetStatus call has this PASCAL declaration:
PROCEDURE Oc=SetStatus (conn:WORD; VAR pBuffer:BYTES;
length:WORD; VAR error:WORD):
conn The connection number returned from an OsAttach call.
pBuffer A pointer to a parameter block. The parameter block has a
mode byte followed by a varving number of parameter bytes.
See Figure 5-Z.
length The length of the parameter block incliuding the mode byte.

errbr A WORD where an error code is returned. You can examine
this word toc determine if the call was successful.

The parameter block has this format:

pEUFFar

moda bBute

FParaneter
Pyte=

Figure 5-2 The Parameter Block

Programming the Serial Gateway Driver 35-5

(sSetStatus MODES

e e T e e e, e e

A parameter block with mode byte = 0 and no parameter bytes causes
the gateway driver to return to a default state:

Default Value Mode To Change
Bits/5ec 1200 7
Data Bits 8 1
Stop Bits 2 1
Parity None 13
Caonnection Timeout 30 Seconds 2
Character Timeout Forever 2
Receive Queue Internal 4
Required For Go-To-Data LTS, DCD &0
Ring Interrupt Enabled b1

5-4 Device Drivers

MODE | - SET OPERATING VALUES

i i i Bits/ | Stop : :
' 1 {Protocol! Char. | Bits | Parity |
! : i : : :
Protocol =1 Asynchronus
Bite/Char. = 5 - 5 bits/char.
b - & bits/char.
7 - 7 bits/char.
8 - B bits/char.
Stop Bits = 1 - 1 stop bit
2 - 1.9 =top hits
S - 2 stop bits
Parity =0 = None
1 - Even
2 - 8dd
3 ~ Mark
4 - Space

NOTE: Mark and space parity are only allowed with less than eight
bits/character. '

MODE 2 - SET TIMEOUT VALLES

EharTimeout ConnectTimelut

H 2
'

CharTimelut and ConnectTimeOut are WORD values.

CharTimeOut The number of milliseconds the gateway driver should
wait for a character before issuing & TimeODut error.
If you set CharTimeOut to zera, then the gatway
driver waits until the requested number of bytes are
available.

ConnectTimeOut The number of milliseconds the gateway driver should

wait for a handshake from the other device after a
go—to-data {(mode six) command.

Programming the Serial Gateway Driver 5-7

MODE 3 - FLUSH RECEIVE FIFO BUFFER

Mode 3 can be used to remove zpurious characters from the receive
FIFO buffer.

MODE 4 - SET USER DEFINED RECEIVE FIFOD BUFFER

! i :
: 4 | fifoPtr ; fifalength H
tiftoPtr A POINTER to an imput buffer in the application
progranm.
fifoLength The length of the new buffer. C::

Use this mode when you want the gateway driver to use a larger input
buffer than the driver’s internal 32 character FIFO buffer to avoid
overflow and lose of data. You should not access the new buffer
directly; but should use the OsRead call instead.

MODE 5 - DISESTABLISH DATA CONNECTION

Use mode 5 to exit data mode. The driver will drop the DTR and RTS
-lines.

5-8 Device Drivers

MODE & - ESTABLISH DATA CONNECTION

O _________

Use mode & to go to data mode and attempt tao handshake with the
other device. The driver will set the RTS5 and DTR lines active and
wait for DCD and CTS to go active {(see mode &60). If this does nat
happen within the connection timeout period {specified in mode 2}, a
TimeOut error will be returned.

MODE 7 - SET BITS/SECOND

i 7 | Speed
1 1)
Speed = 0 -~ 50 Bits/Sec.

1 = S
2 S 11Q
3 = 134.5
4 = 130
] - 300
& - 400
7 = 1200
8 = 1800
9 - 2000
10 - 2300
T - 3400
12 - 4800
13 - 7200
14 - 4600
15 - 19200

Programming the Serial Gatewav Driver 5-9

MODE 40 — SIGNALS REGUIRED TO COMPLETE A GO-TO-DATA COMMAND

— S O

a0

Mode &0 allowe you to control whether CTS or DCD, or both, must be
active to complete a go-to-data command (mode = &). The default is
that hoth CTS and DCD must be active. The mask byte is used to
specify which signal(s) are to he affected by this command., The
data byte is used to specify whether the signal{s) are required or
not. .

The mask and data bytes are both bit-mapped as follows:
MSB LSB
76543210
woxw 0w Dowoson
where "C" marks the bit position faor the CTS signal and “"D" marks
the bit position for the DCD signal. You should set the bit
position(s) in the mask byte to one for the signal(s) to be changed 6":

and set the bit positioni{s) in the data byte tec one to indicate
which signal(s) need be present to complete a go to data command.

MODE &1 - ENABLE/DISABLE RING INTERRUPT

] 1
1]
| 61 Option !
Option byte = 0 - Disable Ring Interrupt
1 - Enable Ring Interrupt

Mode 41 tells the driver whether or not to generate an interrupt
when it detects a ring indicator signal. Some devices may not have
the capability to drive the ring indicator line and will simply keep
it active, thus reducing performance by causing unwanted interrupts.
You should disable the ring interrupt in that case.

%—10 Device Drivers

O

THE_ OsGetStatus CALL

The OsGetStatus call obtains information about the current state of
the serial gateway driver. This call is described in the GRiD-0S
Reference Manual but the status record format differs for every
device. The status record for the serial gateway driver has this
farmat: ’

StatusType = RECORD

open: HOOLEAN;
access: BYTE;
seek: BYTE;

filePosition: LONGINT;
numCharsInFifo: LONGINT;

syncDetect: BOOLEAN;
connection: BYTE;
MademControl: BYTE;
unused: BYTE;
RingSID: WORDs;
END;
apen if the serial gateway is attached, this B0O0OLEAN

will be TRUE.

access This BYTE is bit-mapped to indicate the type of
access allowed. It will always be set for read and
write access. See the GRiD-0S Reference manual for
a description of the bit-map.

seek This BYTE is always Q.

filePosition This LONGINT is always Q.

numCharsInFifo This LONGINT contains the number of characters
currently in the recieve huffer.

synchDetect This BOOLEAN is always FALSE.

connection This cantains the current status of the connection:
cannection = 4 - Carrier was lost.

2 - Connection established.
¢ — No connection estahlished.

Programming the Serial Gateway Driver 5-11

mademContral Thie byte allows you to determine the if certain
signals are active on the interface. The
modemContral byte is bit-mapped as tollows: O

MSH LSB
768543210
woawngpgn DCR

where: maris the bit position for DCD

v
C marys the bit position for CT5
R marls the hit position for DER

& one (I7 in a bit position indicates that signal
1z active.

ringSID This word containe the ring semaphore
identification number. This semaphore will be
signaled when the ring indicator line is active and
ring interrupts are enabled. See OsSetStatus made
&1,

5-12 Device Drivers

O

U

PROGRAMMING_THE_SERIAL GATEWAY DRIVER EXAMPLE

This i= an example of 2 aorogram that communicaies with another
device using the serial port. 1t does the necessar. setup and then
reads a character and writes it back. It then does the steps
necessary to clean ug.

NOTE: Although this prog am does not perform error chedking after

GRiD-0S celle, you should :nclude error checking routines

cade to improve reliab:lity.

$DERUG COMPALCT MOLIST

MODULE Maing

SINCLUDE {“wC"incs‘Comman.inc™text™)
$INCLUDE ¢ wd incs Confas.inc™text™)
$INCLUDE (*wh'incstOsPasFrocs.inc™text™)
F$INCLUDE ["wi*incs 0O=sPasTvpes. inc™text™?

$LIST
FEOGRAM Mairis

COMST dev:celName

VAR SeriallD:
ch:

*

*Serial®;

WORD;
CHAR;

ParameterBlack: PACKED ARRAY [1..91 OF CHAR;

pathMame:
reserved:
error:
actual:

pathName t=
pathMamel1] :=
reserved

n

de
CH
03

PACEED ARRAY [1..81 OF CHAR;
Bvte;

MORD;

IMTEGER;

viceName;
R{7)3 { Device name 1s 7 characters }

Seriallb := OsAttach {pathName, oldFileMode, reserved,
updatefccess, error);

(e apen the serial gateway --——---r=—s=——rm———mm—e—ea)

Os0pen (seriallD,
{=~—- now establish

ParameterBlockll]
Parameter®iockiZ]
ParameterBlock{3]
ParameterBlockid]

L

1, errori;

4

some appropriate serial driver settings =)

1= CHRI{1}); { mode byte ?
= CHR(1); { async 3

:= CHR(B); { B data birts I
:= CHR{J}; { 2 stop bit

Programming the Serial Gateway Driver

in yoti

b ol

ParameterBlockiS] := CHR{1}; { even parity }

Os8etStatus (SeriallD, ParameterBlock, 3, error};

{mmmm s e Set bits/sec —-—--- - — e
ParameterBlock{1l 1= CHR(7); { mode byte ?
FarameterBlock[21 := CHR(3): { 300 Bits/Sec I

()cSetStatus (SeriallD, ParameterBlock, 2, errorl;

{~mmm——————= go to data mode ---- ==
FarameterBlockl[1] := CHR(&); { mode byte 3

OsSetStatus (Seriallld. ParameterBlock, 1, errar);

actual

= OsRead (SeriallID, ch, 1, errorl;

{————mmmm write a CHAR to the serial gateway --———-————==--
Oglirite (Serialll, ch, i, error);

{———mmm disestablish data mode ---r——————=-o-—————momm—
ParameterBlock{1]l == CHR(3); 4 mode byte 3

OsSetStatus (SeriallD, ParameterBlock, 1, error);

e close the serial gateway St

OsClose (serialll, errori;

i e detach from the Serial gateway -
OsDetach (SeriallD,errar);
OsExit (0);

END

-

5-14 Device Drivers

L)

o]

DEVELOP_FILE_FOR_SERIAL EXAMPLE

tName: Serial Example
:Prefix: Example

:Sources:
SerialErample.Pas

sListings:
'.l'J 'LST z
:0b jects:
“w"0BJ "
:Controls Yes w/Debug: DEHUG

sLink:

Link "w'0BJ"SerialS:ample.Fas™0RI"™, ‘w Libs LompactSystemCalls™Lib™

TO SerizalErample™RUN™ BIND SEGSIZE (STACK {(+1500)) NOPRINT

:Test:
Activate “w'FrogramsSerial“Device™
SerialExample
Deactivate "“Serial

:Debug:
Debug SerialE:ample

:Command Line:
Devel opmentExecutive

:GridManager:
6riDManager

Programming the Serial Bateway Driver

6PIB_OVERVIEW

The Gereral Purpose Interface Bus (GPIB) is a parallel interface
used to transmit byte-wide data. At GRiD, the interface is used for
disk drives, printers, and plotters. Since the bus is arbitrated,
many devices can be hooked up simultaneously and each device has a
unigue address. The GPIB supports addresses ranging from 0 to 31.

The interface supports three kinds of devices: Controllers, Talkers
and Listeners. A Controller is a device that arbitrates the bus;
talkers write data onto the bus; and Listeners only receive data.
Some devices may combine the functions. A computer running GRiD-DS
s a Controller but aiso has Talker/Listener capability,

Data transfer on the bus is arbitrated by the Controller. The
Controller first places the addresses of a Talker and Listener(s) on
the bus before each message. The messages can either be transmitted
a byte at a time or in blocks. Handshaking on the bus ensures that
Talkers send at a rate compatible with Listeners and there is a
cignal called EOI (End or Identify) that indicates when a message is
complete.

Some devices can interrupt the Controller. This occurs on a line

called Service Request (SRQ). After the interrupt, the Controller
initiates a process called a Serial Poll to determine which device
requested service.

Programming the GPIB Gateway Driver &-1

GRiD_GPIB_GATEWAY_ DRIVER_OVERVIEMW

The GPIB gateway driver transmits date in two modes: low speed and (::
thigh speed. In the low speed mode (sometimes called the interrupt -
made), the gateway driver transmits data a single byte at a time and
checks after every byte to see if the transmission has been

terminated. Termination can occur one of five ways:

o The number of bytes reguested has been transferred.

o The sending dewvire sent a8 special byte called the end of string
{EOS! character. For example, a digitizer might send a carriage
return after each coordinate has been transmitted over the bus,
The EOS character is device dependent and can be specified to the
GFIB gateway driver. If the device doesn’t have an EOS character
or 1f you want to disable this feature, the E0S character should
be specified as OFFH when programming the gateway driver.

o The other device indicated it was finished by asserting the EOI
line on the bus.

o The request timed out.

o An error occured on the GPIR bus.

In the high =speed mode (sometimes called the DMA mode), the gateway
driver transfers blocks of data to or from a special address in

memory; special timing is implemented to speed up the transfer.
Termination can occur one of four ways: Q;;

o The number of bytes requested has been transmitted.

o The other device indicated it was finished by asserting the EOI
line on the bus.

o The request timed out.

0 An error occured on the GPIR hus.

Because there is no EOS concept in the high speed mode, you should
use the low speed mode whenever an EOS function is desired and the
high speed mode otherwise.

If you use the low speed mode, you can praogram the amount of time
the driver should wait before issuing a reguest timed-out error. In

the high speed mode, the timeout duration is fiwed at five seconds
because a hardware timer is used.

&-2 Device Drivers

DATA_STRUCTURES

PARAMETER

Three main data structures are important to a programmer interested
in writing a GPIE shell: & parameter block and two kinde of overflow

blozks.

BLOCK

The parameter block has this PL/M declaration:

DCL ParasbtistType LITERALLY *STRUCTURE |

connection SELECTOR,
pEuffer PBINTER,
position DWORD,
length WGRD,

mode WORD,
numBuf BYTE,
intAddr BYTE,
pOverflow FOINTER) 3

These parameters shouldn™t be modified by the shell unless ctherwise
noted. The parameters of interest are:

pBuffer

length

intAddr

pOVerflow

A POINTER to the buffer specified by the application
when it made the GRiD-05 call.

The number of bytes requested by the application. It
is updated by the gateway driver to the actual number
of bytes transferred.

The GPIB address of the device with which the
application wants to communicate. If the shell uwas
not assigned an address when it was activated, this
parameter is NULL (OFFH}. You should check for NULL
and assign an address in that case.

A POINTER to another block of parameters. You should
set pbDverflow to point to this block. The format of
the overflow block varies as described in the
following sections.

OVERFLOW BLOCK FOR 1/0 REBUESTS

This overflow block is used when sending ddRead, ddWrite, or
ddDeactivate to the gateway driver; it appears as follows:

DCL OverflowType LITERALLY ° STRUCTURE {

Programming the GPIE Gateway Driver 4-3

dataMode

EOQSchar

secAddr

timelut

dataMoede BYTE,
EDSchar BYTE,
secAddr BYTE,

timeOut WORD) * C

The data transfer mode. You should put a @ in this
byte i1f the high speed mode is desired, and a 2 if
the low speed mode is desired.

In the low speed mode, set this parameter to the
character, if any, used to terminate a message. In
the high speed mode, or if no EOS character is
desired, set it to OFFH.

Not used:

In the low gspeed mode, set this parameter to the
length of time you want the gateway to wait before
giving up on a request. This number is in
milliseconds, i.e., a time out duration of six
seconds is specified as &000. If the high speed mode
is chosen, the timeout is fixed at five seconds.

OVERFLOW BLOCK FOR SETSTATUS REBUESTS

appears as follows:

This overflow block is used when send{ng a ddSetStatus request. It (:3

DECLARE gateWaySetStatus STRUCTURE

mode

dataWord

mode BYTE,
datalord WORD} ;

Set this byte to O if you want to send a selective
device clear (reset) to the device. You should set
this byte to 2 when notifying the gateway driver tao
recognize service Requests from a device.

If you want to recognize service reguests from a
device, set this word to the identification number of
the semaphore that is to be signaled. When doing a
selective device clear, ignore this parameter.

NOTE: ParamlistType and OverflowType are defined in an Include file
—= PrinterDriver.Inc. GateWaySetStatus should be defined in
the shell.

6-4 Device Drivers

SERVICE_REBUESTS

Some devices can interrupt the computer by asserting the Service Request
line. Typically, service reguests are used by a device to indicate a
readiness to transfer data or to report an error. If the gateway driver
has been notified to recognize service requests for a device and one
occurs, the driver will:

1. Poll the bus to determine which device requested service.

~

Z. Read a status byte from the requesting device.

3. Signal a semaphore and pass the status byte through the semaphore
note. You must create the semaphore and pass the semaphore
identification numuper to the gateway driver with ddSetStatus request,
mode two. .

There are twoe major uses for service requests:

o The service request is used to report a readiness to transfer data.
Some devices require a command to be written to them before they can
transfer data. For example, a device might need a command sent to it
before il will transmit. In the ddRead section of the shell, you
would write the command to the device and then wait for a service
request before reading from the device.

o The service reguest is used to report an asychronous event. In this
case, the application should check for the signal. For example, the
device might generate a service request when it detects an error
condition. Your application could have a process waiting for an error
signal and then take appropriate action.

Service requests are very device-dependent and many devices do not
support them. If they do, they may need to be programmed to supply a
service request. Check your device manual for details.

When the shell receives a ddDeactivate request, delete the semaphore and

pass a ddDeactivate request to the gateway driver, This will inform it
to stop responding to service requests from this device.

Frogramming the GFIB Gateway Driver &-5

PROGRAMMING _THE_GPIB_GATEWAY DRIVER_EXAMPLES

This section containe four esamples of GFIB driver programming: QEEE

o Sending a selective device clear to a device.

o Notifying the BFIE gateway driver to recognize service regquests from a
device.

o Reading from the device.

o Writing to the device.

All the examples assume these Jdata declarations:

DECLARE params ParamListType;

DECLARE overflow CvertlowType;

DECLARE plot&uf (8) BEYTE;

DECLARE gatelWaySetStatus STRUCTURE (
mode BYTE,
dataWord WORD) 3

RESET THE DEVICE

This code tells the GPIB gateway driver to send a selective device clear
(reset) to the device at the address specified. @

/¥ 1+ the device wasn’t assigned an address when
it was activated, assign a default one now ¥/
IF params.intAddr = OFFH THEN
params.intAddr = 28;

gateWaySetStatus.mode = 0; /% Reset ¥/

params.pOverflow = IgateWaySetStatus;

EALL OSCALLDriver (9(S,’ *GPIB"),0,DDUBLE (ddSetStatus},
Dparams,derror};

b6-6 Device Drivers

NOTIFY THE DRIVER TO RECOGNIZE SERVICE REGUESTS

This example is for an HP 74704 plotter that requires an Input Magh (IM}
instruction before it will assert a SRO. IM is an HP 7470A plotter
specific command. Other devices may require different cummands.

A If the device wasn™t assigned an address when
it wazs activated, assign a default one now %/
IF params.intAddr = OFFH THENM
params. intRddr = Z8;

gateklaySetStatus.mode = 2; /% Set SRE mode %/

/% ELreate a cemaphore to pass to the gateway driver ¥/
gateWaySetStatus.datalord = OsCreateSemaphore (derror);
IF error = 0 THEN
Dos
params.pOverflow = JgatelaySetStatus;
CALL OSBCALLDriver (@{3,°°BFIE'),0,DOURLE (ddSetStatus),
gparams, Yerror);

/% Send the 7470 a command to enable SRR %/
plotBuf = " IM,223,47; '
params.pBuffer = 2plotBuf;
params.length = 8;
params.plverflow = doverflow;
CALL OSCALLDriver (2(S," 'GFIB*),0,DOUBLE (ddWrite),
dparams, derror};
END;

READ FROM THE DEVICE

This example assumes the device has GPIB address 28, uses the low speed
transfer method and terminates messages with a carriage return (ODH).

Overflow.dataMode = 2; /% Low Speed mode %/
Overflow.EDSchar ODH; /% Terminate message on CR ¥/
params.pOverflow = 90verflow;
/% 1f the device wasn’t assigned an address when

it was activated, assign a default one now %/
IF params.intAddr = OFFH THEN

params.intAddr = 28;
CALL OSCALLDriver (9(5,° *6GFPIB’),0,DOUBLE {ddRead),

Pparams, derror);

Programming the GPIE Gateway Driver 4-7

WRITE TO THE DEVICE

This example assumes the device has GPIE address 28, and uses the high
speed transfer method.

Over¢1low.dataMode = W H /% High Speed mode ¥/
Cverflow.EQSchar = OFFH; /% No EOS char in this mode %/
params.pOverflow = d0verflow;
/% 1+ the device wasn’t assigned an address when

it was activated, assign a default one now %/
IF paresms.intAddr = OFFH THENM

params.intAddr = 28;
CALL OSCALLDriver (d(3, *GPIB®),0,DOUBLE (ddWrite),

Yparams,derror);

6~8 Device Drivers

®

GENERIC_GPIB_SHELL EXAMPLE

$NOLIST LARGE OPTIMIZE{3)

/4 Generic GFIB Read and Write Shell

Default GPIE address: Z28.

Mc Service Requests.

High Speed data transfer mode.

Default TimeOut: 5 seconds -- Fixed in High Speed Mode.
X/

GenericGFPIBDriver: DOj
$INCLUDE ("wl*Incs’*FlmLit.Inc™Text™)
$INCLUDE (FrinterDriver.Inc™Text™)

DEL defaultAddress LIT "28°;-
DCL HiSpeedMode LIT 707

/% Initialice the parameters in the Overflow Block %/
DCL overflow OverflowType INITIAL (HiSpeedMode, OFFH,
OFFH, OFFFFH};

Oshevice: PRODCEDURE {reguest, pParams, pError) PUR REENT;
DEL reguest WORD;
DCL pParams FTR;
DCL pError FTR;

DCL error BASED pError WORD;
DCL params BASED pParams ParamListType;

DCL pSetStatus PTR;

DCL setStatus BASED pSetStatus SetStatusType;
DCL StatusBlock SetStatusType;

DCL getStatus GetStatusType:

DEL getStatusLength WORD;

IF request = ddWrite THEN
LCALL SendToGPIB (Qparams):
El_SE
IF request = ddSetStatus THEN
D3
pSetStatus = params.pBuffer;
IF setStatus.setStatMode = setTimeout
THEN overflow.timeout = setStatus.setNewTime;
ELSE error = notSupported;

END;
ELSE
iIF request = ddBGetStatus THEN
DO;
CALL SETB (0, dgetStatus, SIZE (getStatus));
getStatus. open = openStat;
getStatus.access = accessStat;
getStatus.GFIBAdAr = params.intAddr;

Frogramming the GFIE Gateway Driver

iF params.length < SIZE (getStatus}
THEN getStatuslength = params.length;
ELSE getStatuslength = SIZE ({getStatus);
Catl. MOVE (3getStatus, params.pBuffer, getStatuslength);

END: G
ELSE 2

IF reguest = ddRead THEN
bGO;
/% If no address was assigned when attached,
use the default address X/
IF params.intAddr = OFFH THEN
params.intAddr = defaulthddress;
params.p0Overflow = Yoverflow;
CALL OSCALLDriver (Q(%,7 *GPIB®),0,DOUBLE (ddRead),
Dparams,verrord

END;

Et SE

IF NOT ({request = ddOpen) OR
(request = ddlnitialize) OR
trequest = ddClose) OR
(request = ddDetach) ORrR
{request = ddAttach) OR
(request = ddTruncate) OR
{request = ddDeactivate)) THEN

error = notSupported;
END;
WriteString: PROC {(pString) REENT;

DCL pString PTR;
DCL string BASED pString STRUCTURE {(len EBYTE, chars (1) BYTE); @
DCL intParams ParamListType;

intParams.pBuffer = dstring.chars;
intParams.length = string.len;
CALL SendToGPIE (dintParams};

END;

SendTaGPIB: PROC {pParams} REENT;
DCL pParams PTR;
DCL. params BASED pParams ParamlListType;
DEL error WORD;

IF params.length > O THEN
DO;

/% If no address was assigned when attached,
use the default address ' ¥4

IF params.intAddr OFFH THEN
params,intAddr = defaultAddress;

params.pOverflow = dovertlow;

EALL O0SCALldriver (3{(5,”*GPIR7), O, DOUBLE (ddWrite},

Iparams, Jervorl;

END;
END;

&=-10 Device Drivers

END; /¥ Module ¥/

Programming the GPIB Gateway Driver &-1t

GENERIC_GPIB_SHELL WITH_SERVICE REQUESTS_EXAMPLE

6-1

2

$NOLIST LARGE DPTIMIZE(3)

/¥ Beneric GPIR Shell with "hooks" for Service Requests
Default GPIB address: 28.
High Speed Mode.

X/

GenericGPIBDriver: DOj

$INCLUDE {*w0*Incs*PlmLit.Inc™Text™}
$INCILUDE (PrinterDriver.Inc™Text™)

/% Declarations for 0S Frocegures not in
PrinterDriver. Inc™Text™ %/

CsSignal: PROCEDURE (sid, mode, note, pError) EXTERNAL;
DCL sid WORD;
DCL mode BYTE;
BCL note WORD;
DCL pError PTR;
END;

OcRegisterName: PROCEDURE (pName, token, mode, pError) EXTERNAL;
DCL (pName, pError) PTR;
DCL token DWORD;
DCL mode BYTE;
END;

OsWait: PROCEDURE (sid,time,pError} WORD EXTERNAL;
BCL sid WORD,

time WORD,
pError PTR;

END;

OsCreateSemaphore: FROCEDURE (pError) WORD EXTERNAL;
DCL pError PTR;
END;

DsDeleteSemaphore: PROCEDURE (sid,pError) EXTERNAL;
DCL sid WORD,

pError PTR;
END;

DCL defTimeout LIT *B00G™; /% five seconds %/
DCL defaultAddress LIT 728°;
DCL HiSpeedMode LIT 707

DCL overflow OverflowType INITIAL (HiSpeedMode, OFFH, OFFH,
defTimeout);

DCL firstimeThru BYTE INITIAL (OFFH);

bBevice Drivers

DCL Note WORD:

DCL. gateWaySetStatus STRUCTURE (mode BYTE,
dataWord WORD);

{(lsDevice: PROCEDURE (request, pParams, pError) PUB REENT;
DCL request WORD;
DCL pParams PTR;
RCL. pError PTR;

DCL error BASED pError WORD;
DOL params BASED pParams ParamListType;

DEL pSetStatus PTR;

DCL setStatus BASED pSetStatus SetStatusType;
DCL BtatusBlock SetStatusType;

DCL getStatus GetStatusType;

DCL getStatusiength WORD; -

IF request = ddWrite THEN
CALL SendToGPIB {(dparams);
ELSE
IF reguest = ddSetStatus THEN
DO;
pSetStatus = params.pBuffer;
IF setStatus.setStatMode = setTimeout
THEN overflow.timeout = setStatus.setNewTime;
ELSE error = notSupported;

END;
ELSE
IF request = ddGetStatus THEN
bO;
CALL SETB (0, dgetStatus, SIZE (getStatus));
getBtatus.open = openStat;
getStatus.access = accessStat;
getStatus.GPIBAddr = params.intAddr;

IF params.length < SIZE (getStatus)
THEN getStatuslenyth = params.length;
ELSE getStatuslength = SIZE (getStatus);
CALL MOVE (3getStatus, params.pBuffer, getStatusliength);

END;
ELSE
If reguest = ddRead THEN
DO;
IF error = 0 THEN
DO;

IF params.intAddr = OFFH THEN
params.intAddr = defaultAddress;
params.plverflow = Yoverflows

CALL OSCALLDriver (&(5,”*GPIE"),0,DOUBLE (ddRead),
Pparams, Jerror);
END;
END;

Programming the GPIB Gateway Driver

a=1

ELSE IF request = ddInitialize THEN
DO;

/4 Tell the GFIE gateway driver to respond to SRD for this device.

OFFH THEN
defaul tAddress;

IF params.intAddr
params.intAddr

Ity

IF firstimeThrua THEN
D03
gatellaySetStatus.mode = 23 /% Set SRE &/

/¥ Create the semaphare that the gateway driver
will Signal when a SRD ies asserted by the
device. X/

gateWayvSetStatus.datallord =
OsCreateSemaphore (derrori;

IF error = ¢ THEN
DO;
params.pOverflow = JgatelaySetStatus;
calLt OSCALLDriver (9(5,°"GPIE"),
O,DDUBLE (ddSetStatus),
dparams, Jerror);
firstimeThru = FALSE;

/% Register the semaphore ID so an application can
wait for a signal to this semaphore. %/

CALL OsRegisterName (2(8,’gpibSema’},
gatewaysetstatus.dataword,
1,

Jerraor);
END;
END;
END;
ELSE IF request = ddDeactivate THEN
DO;
IF params.intfddr = OFFH THEN
params. intAddr = defaul tAddress;

params.pOverflow = Jdoverflow;

/¥ Tell the gateway driver to stop responding to
Service Regquests from this device. x/
CALL OBCALLDriver (®(5S,”*GFIB’},0,DOUBLE (ddDeactivate),

dparams,derror) ;

CaLL OsDeleteSemaphore (gatewaysetstatus.dataWord,derrar);
/% Remove the name from the name table ¥/

CALL OsRegisteriame (3(B, gpibSema’),
gatewaysetstatus.dataword,

&—-14 Device Drivers

X/

®

()

.::
Jerrurd;

ENDj;

ELSE

IF NOT ((request = ddOpen) Or
(reguest = ddClose!} JR
{request = ddDetach) OR
irequest = ddAttazh) GR
{(request = ddTruncate)) THEN

error = notSupzorted;
END;

WriteStrings PRIC (pString) REFNT;
DCL pB3tring FTRj
DCL string BASED pString STRUCTURE (len BYTE, chars (1) BYTE) ;
DCL intParams ParamlistType;

intParams.pBuffer = dstring.chars;
intParams.length = string.len;
CALL SendToGFPIB (dintParams);

END;

SendToGFIB: PROC (pParams) REENT;
.DCL pFParams PTR;
DEL parame BASED pParams ParamlistType:
DEL error WORD;

IF params.length > ¢ THEN
DOy

IF error = 0 THEN
DO;
IF params.intAddr OFFH THEN
params. intAddr defaul tAddress;
params.pOverflow = Javerflow;
CALL OSCALLdriver (2(5,®‘*GPIE™), O,
DOUBLE (ddWrite), 3dparams,
derror);

END;
END;
END;

END; /% Module %/

Programming the GPIE Gateway Driver

&-16

sName: GenericGPRIB
tPrefix: GenericGRIR (:j:
slistings: “WO'LST® '

:0bjects: WO OB ¢

:Sotrces:
GenericBPIB.Plm
GenericGPIBSRE.Plm

:Control Yes w/Debug: DEBUG

tlink GenericGPIB:

LINK

‘w0 *0BJ *GenericBFIE. PLM™DBJ™, ‘w0 Libs *ImpDev.Asm™0b ", *wO Libs LargeSingl
eException.Asm™0b ™, ‘w0 *tLibs*LargeSystemCalls™Lib™ TO GenericGPIB“Device™
BIND SS{STACK{(}} PC(PURGE) FASTLOAD PURGE

PRINT (“wl*LST "GenericGPIB“MP1™)

sLink GenericGPIB SRO:

LINK

‘w0 *0BJ “Gener i cGFIBSRE. FLMYOBJI™, *w0 *Libs *ImpDev.Asm™0bi™, ‘w0 Libs ‘LargeSi
ngleException.Asm™0b j™, "wl'Libs ‘LargeSystemCalls™Lib™ TO

GenericGPIBSRO Device™ BIND SS(STACK(0)) PC{PURGE) FASTLOAD PURGE

PRIMT (‘w0 *LST *GenericGFIBSRE“MP1™)

:Test GenericBPIB:
Deactivate GenericGPIE -
Activate GenericGFIB 28 (L_

:Test GenericBFIB SRG:
Deactivate GenericGPIBSRE
Activate GenericGPIRSRE 28

:Command Line:
"Devel opmentExecutive’

:GRiDManager:
’GRiDManager”

Device Drivers

This appendix defines the GRiD Universal Printer Interface Language. It
defines the interface between any application which supports printing and any
GRiD supported printer driver.

Applications should attach to ‘Printer. GRiD-0S will be responsible for
mapping this into the current system printer. When opened, the driver
initializes the printer into its normal typeface (12 pitch). When closed, the
driver flushes the printer’s internal buffer.

The commands which each printer must support (sﬁpport can mean to ignore) are
listed below. The driver must accept these codes in a serial byte stream.

Command Turn on/off

Pass an ESC thru ESC ESC

RBoldface ESC *R°
Underline ESC *U°
Italics ESC *I°
Superscript ESC *+7
Subscript ESC *-?
Enlarged ESC "E?
Condensed ESC *C*
Line spacing ESC *L* n

Where n is in 1/8ths of an line. (8/8 = single line spacing)

Graphics ESC "6" width height topLeft.x toplLeft.y nextRow

NOTE: When using sub or superscripts, the line spacing must be set to a value
greater than single line spacing to alliow room.

NOTE: Turning subscripting (superscripting) on automatically turns
superscripting (subscripting) off.

Universal Printer Language A-1

In addition, each driver must suppurt a command to print screen images. This
is impossible for letter quality printers but they must skip the appropriate
amount of "white space" so that an image could be pasted in later.

ESC ’6" width height topLeft.x topleft.y nextRow @

The five parameters are word values and are explained in the following
diagram. All parameters are in pixels units. The values to print a normal

screen image are:

320, 240, 0, 0, 320

A-2 Device Drivers

APPENDIX_B: ERROR_CODES

This section lists the error codes that can result from calling a gateway
driver,

Serial Gateway Driver

0: Everything OK. No action necessary.

33: Request Not Supported. You asked the gateway driver to do samething
impossible. For example, the serial driver does not support a seek
request.

231: Device Not Active. This error can occur in three situations:

l. The serial device has not been activated. Be sure you have
activated Serial™Device™ from the command line or
programmatically.

2. You attempted to transfer data betore establishing a connection.
Make an OsSetStatus mode six call to establish a connection.

3. The gateway driver lost CTS and/or DCD. You can determine which
one by making a OsGetStatus call and examining the modemControl
byte. Make sure these signals are active on your hardware or
make an OsSetStatus mode 60 call to change the required signals,

235: Bad Parameter. You passed the gateway driver a valid request but with
a bad parameter. For example, you would get this error if you made an
OsSetStatus mode 44 call to the serial gateway driver.

401: Time Out Error. Thic errar Can occur in two situations.

1. When reading, the gateway driver did not receive a character
within the character time out periocd. Check your hardware ar
make an OsSetStatus mode two call to change the character time
out,

. When establishing a connection, the gateway driver did not
detect a handshake within the connect time out period., Check:

ka

Error Codes B-1

yowr hardware. You cen make an DeSetStatus mode two call to
chunge the connect time out period, ar you can make an
NzSetStalus mode 60 call to change the required signals.

307: Carrier Was Lost. Check your hardware.

403t Parity Error. Make an OsSetStatus mode one request to change parity
LYe.

Modem Gateway Drivér

0z Everything OK. No action necessary.

3%: Request Mot Supported. You asked the gateway driver to do something
impossible. For example, the modem driver does not support a seek
request. '

23{: Device Not Active. This error can occur in two situations:

1. The modem device has not been activated. Be sure you have
activated Modem™Device™ from the command line or
programmatically.

2, You attempted to transfer data before establishing a connection.
Make an DeSetStatus mode sin call to establish a connection.

275. Ead Parameter. You passed the gateway driver a valid request but with
a bad parameter. For example, you would get this error if you made an
DsSetStatus mode 41 call to the modem gateway driver.

400: Modem Did Not Answer. When establishing a connection, the gateway ﬁ
driver did not detect a handshake within the connect time out period.
You can change the connect time out periad with OsSetStatus mode two.

a01: Time Out Error. When reading, the gateway driver did not receive a
character within the character time out period. You can ad just the
character time out period with OsSetStatus mode two.

402: Carrier Was Lost.

403: Parity Error. Make an DsSetStatus mode one request to change parity
type.

A0&4: Bad Phone Number. You asked the modem driver to dial a number that
contained illegal characters. Only numbers or format characters are
allowed. If you are using touchtone dialing, the "#" or vkt
characters are also allowed.

GPIP Gateway Driver

0: Everything OK. No action necessary,

E-2 Device Drivers

L

Requesi Not Supported. You asked the gateway driver to do something
impossible. For example, the GPIB driver only supports set status
mades of zero or two. Other requests will return this error.

GFIB Time Out. When reading, the gateway driver did not receive a
character within the time out period. If you are using the low speed
mode, you can adjust the time out period in the parameter block.

GPIB Not Responding. The gateway driver could not communicate with
the other device. Be sure the other device is turned on and ready.

Error Codes B-3

