PROGRAM DEVELOPMENT GUIDE

June 1984

COPYRIBHT (C) 1984 BRiD Systems Corporation
2535 Garcia Avenue

Mountain View, CA 94043

(415) 961-4800

Hanual Name : Program Development Buide
Order Number: 29200-43
Issue date: June 1984

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy,
recording, or otherwise, without the prior written permission of GRiD Systems
Corporation,

The information in this document is subject to change without notice.

NEITHER BRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRESSED OR IMPLIED ffi)
WARRANTY, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF <
MERCHANTABILITY, BUALITY, DR FITNESS FOR A PARTICULAR PURPDSE., G6RiD Systems

Corporation makes no representation as to the accuracy or adequacy of this

document. GRiD Systems Corporation has no obligation to update or keep current
the information contained in this docusent.

GRiD System Corporation’s software products are copyrighted by and shall remain
the property of GRiD Systems Corporation.

The following are trademarks of GRiD Systems Corporation: 6RiD, Compass Computer.

The following is trademarks of Intel Corporation: Intel.

®

O

TABLE OF CONTENTS

CHAPTER 1: THE PROGRAM DEVELOPMENT CYCLE

The Development SEQUENCE . eusesaassnarvonrrosssonsssvtssannsssns
The Development Environment - GRIiDDEvVelOop vuvevsvevrcnnvavnrnanns
Conventions for Organizing and Naming Files .veivuiervninasvnnnnss
File Naming Conventions «.o.uiiesrosvsnssnennrarrrossrosasnsanens
File Titles .v.uuu 000C00000000000a000a0a00000000000000000000
N N G 8000000000 0a0 00800000000 0a0d00c00a0otondeanaonn e

CHAPTER 2: THE GRiDDEVELOP PROGRAM

The BRiDDevelop Main MenU .uuievinseriesnannsnsansnanssooencansana
GRiDDevelop Data Files ..uceervnenvrnvanvoresrnsvenasaonsassennes
The SRiDDevelop Pre-Defined TOKBNS vvvesvenvvenvanvnovrantansns
tControls controlName:vvciivinriescennnanssnncnnccsnnansnes
1T 1T 1 T T T L
:Debug debugName:iitiiinenisi it isinatsnsinrntrseanans
43 PE 58 000600008000 008 000RB 0000000 nd0caadcasnaoa0an0a00ans
i3 E 8 a0 a0 000006000006 a000000000880 0000 aseARa00L00009a000c
B8 G 606600000 B 000000000000000000005000000000000600000000¢
think 1inkNamBY oo eiiieiennionasnnansnacannnnssaressanoaaones
HIS B < (e B 500 00 0 0ot Do 000 B nGaa0 00NN a BB o B oo 000 Do 0a0n00a0n0aae
5L S0 566 0000000000 000000 0000000000008 a0a0000000aa0060
HUE 28 5068 0080000 0a00000000000000 000000000000 0000000000 0000¢0
1 T - o -
L R 0 G0 0 0000 D00 a0 000080000 D000d 000000 Boanoo0aa0oa00000:
tPrint TO: siiieviivsinansnna 0000000000000 008000000000000000
HR=Tu H T ok of -1-F S 0C000000000008000000000000000000C000000a0
t00uUrces grouplames .iussernresriiancns ettt annstoarenes
G0 60060 Gonaan0a 0000000000000 000000 s 0annaca 0008000000
tTast testName! oot iereitnestrenonanonssnsonosuoosentrnasnsnns
User-Defined ToKenS +iviesveinrennsrorantsscnsnnnonsaasissasnnes
Command Modifier Characters ..uviiieiitoneeanennanonnornsanannas
The GRiDDevelop Commands MENU . iiviivneiennrnressronsansionsnsns
The Options Command ..csivvvessenvioavivannnnas 000000000 00a000 0
The Transfer Menu 00000000006 a000000A00000B 00000000000 0s
Changing the Development Data File 80000 A0000NNEaB000
Frinting List and Source FIIBS t.ivviiiinieianrosnronrnonnsans

| I T T | | I L T T T
LY o T = - I B R = i T 4 I 2 I T

[

MNNMNMNNNMNPNDNRMNDN NN NN
1
—

]
—
[p%]

2-12

. 2-12

2-13
2-15
2-13
2-14
2-17
2-17
2-18
2-19
2-19
2-20

iii

CHAPTER 3, COMPILERS, LIBRARIES, AND INCLUDE FILES

Compiling Programs voseeansssrcanoernononasaasosrsanorssstasenss
Compiler Size Controls .vsvivavecassnsarsassonsassssnssararany
Libraries sessseuneasrrsasansnnaranristarsasnsasrsonnssosaanavanns
Pascal Libraries and Modul&s .eeeescenrorarsosnsevsnissansars
FORTRAN Libraries and Modules «vvseinvrnanacnarooneosiconnnns
PL/M Libraries and Modules sesseoarersaansnsssnnsssnonannanns
BOB7 Libraries and Modules «.veviesrarnnrvcvsanoornssrennnnna
Invoking the Compilers seoiisenssannearivasssansartssstenonsarans
The System and Language Include Files suvvennsvnonnesoscinnsnnens
Examples of Include Control Statements .i.oivsuvtiniovinaannas

CHAPTER 4. THE LINK PROBRAM

Invoking the Link Program «ovrvervronsasnosnoosnsonavsrrsavsssnos
Link Invu:ation Examples O S R R I B I v B I I B B B N R B Y I B N B R B RN RN B I R RN R N N B BN)
Link CDntrOl Sumﬂary [S B B I N I R R N B I I B N B R RN RN RN B RN BN RN RN N N RN RN RN RN N Y S R R RN BB)

Assumerunt O I I I TR O B A R B R R R R R B R N B R R R R BN RN RN RN RN R N RN B Y B R RN RN BE RN B B R BN R

Bind N B I R A N B B B R A AT R A RN BT R RN BN B B RN RN BN B RN B R RN B A N BN O BB RE A S R I B A A A L N

Fastload [I I RO A O R B I B R AN I B BN I R BB Y B B N Y RN Y R R B RN BN B RN RN B NN R B RS BN BN R N N R

Hap L R I I I I I A I N R I N B B R A B R R A B R R A R R N R A N N A N N NN N

Name N RN N T I I o S B I I B I R B R I BN B B B B I BT R R BB B B B I B BB R BN BN R

DVEF]EY L T T I I BT B B B I I B B U I I I B R B A R R B B BN R R RN A B R R N B N L

Print [A I I RO A R B B O R AT RN B B S B R B B R NN R S B Y A DY R RN BU N RLEE A DL L B)
Pl’intCOntrﬂl E 0 0 F B % 0 0 % 48 40 40 800 FERSSESEDNRFYdrd U RS R A VYRR

PUFQE [N I A A O O R AT B B B N B B Y IR LR B O S I B IR R N B IR B B B BB NS)

SEgSiZE TR I B I O B R B R B Y N A R N B I A I B BB N I I BN R RS R

ThE Linker’s Print File [R A A I I B B R R A B R RN A B R RN I B R R R A A BRI A

CHAPTER 5. THE DEBUBGER

Compile and Link Considerations ..vievansrornorarsnoervsonarens
Invoking the Debugger ...isviveisavosesnsisnsatanersansssnaasasy
Debugger Syntax and Terminology svessvevorrinrtscsaernnanssenren
CODE-Key COMMANGS «uvesvonansnsancanssneasnronsancasanssrsanatonns

The Help (CODE-?) Commandicovnensnsa

The Set Breakpoint (CODE-B) Command
The Clear Breakpoint Command

LRI R A B B Y S IR R Y B |

The Duplicate Line (CODE-D) Command «evsssvsssanssstossannans
The Executive (CODE-E) Command .sviiievssnsrorronrsrscasvsssns

The Info (CODE-I) Command ..vcvvuivnsnens
The Location Display (COBE-L) Command

CRCTE RN B NN S R O B R B B B

The Message Dispiay (CODE-M} Commandovveisvnnvansnnonnn
The Options (CODE-0) Command sssviesannrnnnsnsrssssrancensans
The Proceed (CODE-P) Command ..ievssnsavsnsonsvnsasnnsasanais
The Quit (CODE-B) Command «sivsassesnnvssnsonosstsnnsesssnens
The Register Display (CODE-R) Commandvvescreenccaacnonss
The Tasks/Semaphore Display (CODE-T) Command .vivvvevianaacas
The Window Toggle {CODE-W) Command ..ccvuissnanessarsnascrnans

Command Line Commands .. vivevivaronnnnce

=40 BV S FEESIEI BN D

The Display Address COmMmENG .. ivessvvsstvosarscoatrsntrssonans
The Digplay Contents Command oessavnss

iv

1 L I T |
0N 3 0l Gl G NN RN = e

(JMW'J'CMC:CHNMM
[

| 2 I I B | | L T I U |
00 M~~~ 00U NN -

R I R g o T R R
¥

1

mmmmmmmmmml.lnmmmmmmmmmm
0000 SN NS 000 LN RS

O

The Assign Value Command

The Memory Dump Command A00ooodona000a0an Dadddoonoo
The Examine/Change Memory Command ... dooooao: sea 00
APPENDIX A. ALTERNATE DEVELOPMENT APPROACHES
Using the Development Executive Program «eoveeeessossessses .
Using the DO Program with Command Filesvue.. 0000 .
Executing Command Files from the User Interface ...eeeesvevssess
APPENDIX B. PROGRAM OVERLAYS
The OsOverlay Procedure ...veeeeenssenss 0000000000000 0000a0
Pascal Dverlay Example ..uvvverinnrnins] 500 0000000 viaaea
Linking Overlays uvieveveoneroornsenssecasenas 000000000 000
Additional Overlay Considerations ..ueveeeonenss Do00G0o 4000
FORTRAN Dverlay Exzample, 0000000 LEEELE . 000 00000000 .
APPENDIX E. SYSTEM FILES AND UTILITIES
Syntax Notation (uuiieirivuvenninnnnneses . 5 5 50000G00
Entering Commands ..vvverninenraseans . 000 o000 0o0000
Wildrards coonnvennvnonceoens I T T T T T S T
The System Errors File +..o0... 006000000 H00c0o00a000c00a00000
The Activate Program .uvuieiieensnernenssnosnrens 0000000 . .
The Catalog Prograd .vuvecvnirnroances 0eO00a0000 e '
Lreating a Catalog File pCo00000oanaaa00 oL savas .
' (Exclamation Point) ..ivuvsvinnnns oy AN Sogooooog PN
? (Buestion Mark) ,.iveiinirnnnnes . 00000000 s ‘o
The Compare Program «.oveevvervonsanencns 0000000 3000000 P
The Deactivate Program vt vuvuerernonsnsressnrsoceesrnarnsnsnns
The Development Executive FrooraM.veeeeseeces g0aoooac 00 0060
The DO Program G0Co0Dc000000000 So00oaanaod .
The Dump Program ueuveeeerseiienensenassnsenanns e .o
The Elapsed Time Programovevsvnvas De000oo00006 veaas
The Executive File .vivivunn.. 000000 B0CO00C 00000000000C 00
The Load Program 000000000000 ' 0000 00a0a000 .
The Modem Device File .uvveuevrnnsas . 000aDo0 0000000 800
The Prefis Program vuuuessesineessiosnrorensnsnsonennseasns RN
The Softkeys Files vuvuuiivinrnoninnensnnarens 000000 Bocano
Programming the SoftKeysS .u.vieuvensresneroreiasrorncncsnnsos
Multiple Softkey Filesveivennnnrrenas 900000caa00A00a0 .
The Status Program cuvuss i iiiesrnornensonssenensonsenenss
The Summarize Program ...oeveevnenns 0o000C B T .
The Time Program ...vievvienrnivnrnonsnne 3000000 060000000000
The Unload Frogram couuivinverneannronenenss e e ease
The Hork Program «vvvvservvrinnnnnsans 5 200005 seesbaisas e

APPENDIX D.

LINK ERROR MESSAGES

BBl rEr BN NN N sl e R R v R e R]
[}

- - -
[B o T o B o o I s T
t

S-10
=10

3-11

LIRS N T R Y B Y R |
b L= Al = o = I T | RO K T

LS 2 S D T B |

¢

LI |

1
L e s B I s B o T = = I

] |
Lot B o8 B i e]

ABOUT THIS BODK

This book describes how to use the BRiD Compass as a program development tool.
Toa assist you in program development, a pewerful and easy-to-use development
toel -- GRiDDevelop ~-- is available, GRiDDevelop provides a flexible
development environment where you can quickly edit your source files, campile
and link your programs, and then proceed to the debugging, re-editing cycle.

Four programming languages are currently provided: Pascal-86, PL/M-8B4,
FORTRAN-B&, C and Assembler-86.

You create program source files using the text editor program, GRiDWrite. The
source files (along with any required INCLUDE files) are then compiled using
the appropriate Intel compiler (Pascal, Fortran, PLM, C, ASM). Guidelines for
using the languages and their tompilers are provided in Chapter 3 of this
manual. The INCLUDE files are also listed and briefly described in Chapter 3.

The compilers produce list files and relocatable object modules. These
modules, along with other modules you may have compiled and library modules,
are then linked together using the Link program described in Chapter 4,
Programs can be debugged on the BGRiD Compass with the GRiD debug program
described in Chapter 5.

R number of useful system utility programs are also available to sase systenm
maintenance tasks accompanying the program development sequence. These
Programs are described in Appendix C.

CHAPTER 1. THE PROGRAM DEVELOPMENT CYCLE

The GRiD Compass gives vou great flexibility ia defining how you use
the computer and its scftware when ceveloping programs. The
GRiDDevelop program is a powerful and easy-te-use tool that helps
you organize your files and greatly speed up the development
process. GRiDDevelop is described in detail in Chapter 2. Before
discussing GRiDDevelop, howevezr, let's take an overview of typical
development sequences and the available tools to assist program
development.

The Developeent Seguence
Figure 1-t illustrates the general sequence followed when developing

programs and also shows some of the software tools that are
provided.

Program Devel:zpament bBuide 1=1

=2

[4 -
[}

‘Create/Edit—>t———Compile———>|————Link————> | Dabug-’

List Files Hap Files

pom, Pas™LST™,
pgm.Pla~LST™~
pam. FEn™~LST™
pgm, ASm“ELST

pom.Pas*MPL™,
pom.Plm“MPLY,
pgm, Ftn™MP1™
pgm. Ase™~ M1~

firelocatable Linked
Edit Source Files Compile Dbject Modules Link Hodules Debug
pam.Pas Text Fascal pon.Pas, *0bj pgm.Pas*Run®,
GRiD pas.Pla™Text Yy FLH pam.Pim. ~Ob{~ Link pgn.Plm*Run® Debug
Write pom.Ftn*Taxt™, Fortran pom. Ftn.“0b ™ pom.Ftn~Run™
m, Asm Text™ ASm pom. Asm. ~0b pam. Asm~Run™
L [|
Include Files Other Relocatable
Dbject Modules
®in.Pas, Inc
#ux.Fto, Inc
HRH . AS]. Inc

Libraries

Figure {-1., The Program Development Sequence
The development process consists of four iterative phases!
o Editing (writing) program source files with GRiDWrite

o Compiling source files with one of the language (Pascal, PLM,
Fortran, Assembler) compilers

¢ Linking compiled object medules with the Link program to produce
modules which can be executed (run)

o Testing and debugging the executable modules.

This four-step sequence is repeated while you refine and debug your
program.

When you are creating the text source file for a program, GRiDWrite
speeds the process with such features as automatic indentation and
fast substitution and duplication of phrases and whole sections of
code. For a complete description of GRiDHrite, refer to the
BRiDWrite section in the BRiD Management Tools Reference manual.

After you have finished writing or correcting a source program, you
must invoke the compiler to translate your text file into an object
file.

Invaking the linker program requires a more complicated sequence
since it usually involves naming a number of files that are to be
linked together. For exzample, here is a typical linker invocation:

LINK EBhell.Pas“0bj™, FarmsInit.Pla~Dbj",
'w'Libs 'DataForms.Pas™0bj™, 'w'lLibs'largeException,Asm™~0bj"™,

The Program Development Cylce

O

O

@

FO{'w'l1bs'SvetemCalls™Pub™) TO Shell™Run™ BIND FURGE FASTLOAD
ssistack (+1000]))

Typically, you might edit several modules, then compile them one
after the other, and finally link the modules together along with
various libraries. You would then test and debug the linked,
srecutable module. 1If errors are discovered, you would repeat the
edit/compile/link seguence. The goal of the program development
environment is to make this repetitive seqguence as easy and fast as
pessible.

THE DEVELOPMENT ENVIRONMENT -- BRiDDevelop

The GRiDDevelop program (described in Chapter 2) provides a
development environment based on the assumption that most software
development consists of edit/compile/link/test cycles. You can
define many of the characteristics of the environment by filling out

a data file with information about source file names, link cosmand /'

tines, subjects for sources, listings, and objects, and other
miscellaneous cemmands, The GRiDDevelop program reads this file for
the data to drive the program development cycle.

You use GRiDDevelop data files to specify the files that the
GFiDDevelop program will operate on to initiate various development
activities such as editing, compiling, linking, and so an.

When you use GRiDDevelop to provide the developsent enviroament,
GRiDWrite is automatically invoked so you can create, edit and
carrect your spurce programs. OGRiDDevelop also automatically
invokes the appropriate compiler required for your source prograas
and alse lets you set any ctontrols that you want to use during the
campilation.

Link statement files are set up in the GRiDDevlop data file so that
you tan issue a complicated link statement with a single keystroke.
You can also easily edit the link statement(s) during the
davelopment cycle directly from GRiDDevelop.

You have several other alternatives when deciding an the environment
you want to use when developing programs using the GRiD Compass.
Although we suggest that ycu use the GRiDDevelop program, since it
provides the fastest and most flexible environment, we describe some
alternate approaches in Appendix A.

CONVENTIONS FOR ORGANIZING AND NAMING FILES

Although there are few hard anc fast rules for organizing your
directortes and naming files, there are some conventions that have
been adopted internally at GRiD and which are assumed by the
bkibDevelon pragran. Even if you do not use BRiDDevelop, chserving
these conventions will be of value to anyone doing progranm

Frogram Development Guide -3

development work using the GRiD Compass,

O

Figure 1-2 illustrates part of a typical directory on a hard disk
device.

Hard Disk
Device
Level) ?
Subject] J l I_ I]
Level Inzs| |Libs Proarans Ob js Lsts Py

Prograns

Title (Include] |Library||Utilities |[Dbject] | List Source
Level Files Files | [Conpilers || Files| | Files files

Figure 1-2. Organization of Typical Directory

The purpose of this organizational style is to keep all files that

are logically related in the same directory. This keeps the number

of titles within each directory from getting too large. This
organization also simplifies such maintenance activites as backing

up files and obtaining new copies of files, and standardizes (::)
references your programs make to include files and libraries. The
directory organization shown in Figure 1-2 puts all the include

files under one subject {Incs), all library files under one subiect
{Libs), all object files under the Objs subject, all source files

related top a particular programs under MyPrograms, and so on.

FILE NAMINGB CONVENTIONS

There are two file naming conciderations: the file title and the
file kind (or type).

File Titles

1-4

GRiD-05 imposes two small limitations on file names. First,
characters used in the title can be any of the printable ASCII
characters between ‘space’ (ASCII code 20 hex) and DEL (ASCII code
7E Hex) except for the single backquote (') and tilde (%)
characters. Second, the file name cannot exceed 253 characters
total including device, subject, title, kind, and the delimiter
characters.

The Intel compilers, however, place greater restrictions on file

O

The Program Development Cylce

o

File Kinds

names, They require that file names (including device, subject,
titie, kind, and the delimiter characters) be no longer than 45
tharacters. You should therefore ensure that your program names do
not exceed this limit.

GRiDDevelop makes some assumptions about file names. (Note: Even if
you do not use GRiDPevelop, it is recommended that you ohserve these
conventions.) The first assumption GRiDDevelop makes is that you
append some language identification information to all source file
titles. For example a Pascal source file should have the name
MyProgram.Pas™Text™, a PL/M version of this program would be nanmed
MyProgram.Plm“~Jext™, an assembly language version would be
MyProgram.Asm, and a FORTRAN version would be MyProgram.Ftn Text".
This convention lets GRiDDevelop automatically invoke the
appropriate compiler for your source programs. It also makes it
gasier to organize vour files and identify the file you want even if
do not use GBRiDDevelop.

The other convention is to identify the include files (for any
language} by appending .Inc to the name. For example,
HyProgram, Inc™Text™,

GRiD-DS and some BRiD applicatiens require that files be of a
certain "kind” in order to perform some activities. For example, if
a file is an executable program, the system requires that its kind
be “Run™j otherwise, the file cannot be executed. The file kind
suffix also provides additional information about the contents of
the file so that you can tell quite a bhit about a file just by
looking at its kind.

When you are rupning application programs under GRiD-DS with the
Executive program, you can select a data file, and the systenm
automatically invokes the executable progras to work or operate on
that data file. The program that will be implicitly invoked to do
the work must be of kind “Run fileKind™, where "fileKind" matches
the Kind of the file being seiected. For example, the progranm
GRiDWRITE™Run Text™ works with a file that has a Kind of *Text"“.
The file that is to be operated on must have a kind that matches the
fileKind of the program being iaplicitly invoked. For example, a
file named Memo that you want to edit using GRiDWrite would be of
kind “Text™, Thus, its complete name would be Memo™Text™.

To implicitly invoke and initiate execution of the application
program (the program that is to do the work), just select the
subject and title of the file you want from the File form and press
CDODE-RETURN,

During the program development cycie, same file kinds are appended
automatically by various utilities; others must be appended by the

Frogram Development Buide L]

1-b

user. Gome of the file kinds you will encounter and use are listed
below in alphabetical order. (:ﬁ)

{NOTE: Some kinds will always appear in all caps while others are
shown with just the first letter capitalized: Those in all caps are
appended by Intel software such as the compilers. GRiD-0S, however,
does not differentiate between upper and lower case: yDUu Cap Uuse
any mix of upper and lower case in file names.)

“Com"

~LIB™

“LST™

~MP1™

~0BJ™

*Run®

“Text™

& Com (Command) file contains a list of executable
files, You must add the “Coa™ kind when naming
the file.

This kind is usually appended by the Lib utility
program to identify modules that are part of the
library, although you can specify any kind you want
with the Lib prograas.

The compilers create LST (LiST) files. Lst files
show program listings with statement and line
numbers, error messages, and other programming
information. The compiler automatically adds the
~“LST™ kind.

fn MP1 file is the linker’'s Map file. The Link
program automatically appends the “MP1™ kind.

The compilers generate unlinked OBJ (Dbject) files (::}
and append the “0BJ™ kind.

Run files are executable files that are created by
the Link program. Note, however, that you must
specify the “Run™ kind yourself to the output file
title in the link statement.

Any file created with GRiDHrite will have the kind
“Text™ appended to it unless you explicity specity
that it be of a different kind (such as “Com™).
Thus, the source text for a program that you create
using the text editor will usuvally have “Text™
appended to its title.

The Program Development Cylce

ihgj

THE GRiDDEVELOP PROGRAM

The GRiDDevelop program provides a development environment based on the
assumption that most software development consists of
Edit/Compile/Link/Test/Debug cycles., You can define amany of the
tharacteristics of the environment by filling out a data file with information
about source file names, link command lines, subjects for sources, listings,
and objects, and other miscellaneocus commands. The GRiDDevelop program reads
this file for the data to drive the program development cycle.

The GRiDDevelop program resides in memory at all times. In order to use it,
vyou must have the compilers (that you use), GRiDWrite, and BRiDPrint in the
programs subject.

THE GRiIDDEVELOP MAIN MENU

The GRiDDevelop program is invoked by filling out the File fora <~
specifying a file with a kind of Develop. The program then displays
the main GRiDDevelop menu shown in Figure 2-1. To initiate one of
the activites listed on the menu, just select and confirm. The
BRiDDevelop Main aenu is the default menu; once you have invoked the

GRiDDevelop program, this menu will be displayed whenever you press
ESC.

BRiDDevelap 2-1

3

2

=2

g-Jan-&4 1:

)
!
2

Edit list file

[@ ._source File
CMPlle

Lirk:

Compile and link

Test

Oebuia

fidd entry to log file

GRibbevelop: Select item and conflirrm ;

Figure 2-1, The Main GRiDDevelop Menu

The files that are to be acted on by of each of these menu items are
specified in the GRiDDevelop data file., For example, selecting
"Edit source file" brings up a menu displaying the filenames you
have specified in the data file. Fiqure 2-2 shows an example of a
list of source files. Confirming one of these files invokes
GRiDWrite and brings in the file you have selected so that you can
gedit the source progranm.

Program Development Guide

&

-
%

16-Jan—-54 10:26 am

Edit souwrce t1le: & 2m and confitrm

Figure 2-2. The Edit Source File Menu

o All of the items listed on the Main menu in Figure 2-1 will be
4 } described as we proceed through this chapter. Sinte a description
of the GRiDDevelop data file provides an understanding of how the
Main menu works, we will discuss items on the Main menu in
conjunction with the data file.

BRiDDEVELOP DATA FILESB

You use GRiDDevelop data files to specify the files that will be
used during the various development activities such as editing,
compiling, linking, debugging, and so on. The data file consists
of tokens, filenames, and command lines.

THE BRiDDDEVELOP PRE-DEFINED TOKENS

A BRiDDevelop token is defined as all characters enclosed within a
pair of colons. There are pre-defined tokens and user-defined
tokens. User-defined tokens are any tokens not pre-defined by
GRiDDevelop. Examples of user-defined tokens will be described
after we've discussed the pre-defined tokens listed below.

SRiDDevelop 2-3

tControls:

tDebug:

1Debug debugNames:
tEntert

1€xits

thinks

iLbink linkName:
tListings:

tLog File:

tName:

t0bjects:

tPrefix:

:Print To:
:Sources:

tSources groupName:
1Test:

:Test testNames:

sControls control Name1

2-4

Each development data file can specify as many of these tokens as
needed to set up controls that will be presented as choices on the
"Compile fora". The token is followed by a list of the controls
that are to be used when the compiler is invoked. For example, the
following token

:Controls Yes with Debug: DEBUG NOPRINT

would cause the following form to be displayed when you
select Compile from the Main menu:

Program Development Guide

O

O

w

15 Jar-34 16:27 am
sl 2z Yoz with Debuag
Filei.Pas jHo |
FileZ.Fas [)
File3 Pas Ho
Filed Ftn o
FileS .Ftn Ho
Files.Ftn Ho
File? . PLM Ho
FilasS PLM Mo
File3.ASH Ho

Compile source f1laes: Fi1ll in farm and confirm

You can then specify which files are to be compiled and
which are to be compiled with the DEBUE NOPRINT controls
applied,

1t Debug?t

s Debu

Each development data file can specify one Debug token.
Following this token, you can specify any number of
command lines each of which must be ended with CR/LF,.
Typically, one of these command lines would be an
invocation of the debuger along with your program. The
following is an example of the use of the Debug token:

:Debug:
Debug MyProgram™Run™ TestFile“*Text*

Now, when you select the Debug item from the Main menu,
the Debuy program is invoked to operate on the

MyProgram®Run™ file which uses TestFile“Text™. After this

sequence has been completed, you would automatically be
returned to the Main menu.

g debugName:

If more than one debug command file is needed, then
multiple debug tokens can be defined in a Development
file. The character string (debugName) is displayed on
the Debug menu and the user selects which of the command

GRiDDevelnp 2-3

sequences is to be performed as part of the debugging
sequence. You can specify as many of these tokens as
required 1n each development data file. The following
gxample illustrates the use of the Debug debugName token:

tDebug Use test data file #1:
Debug MyProgram™Run™ TestFile#i“Text"

:Debug Use test data file #2:
Debug MyProgram™Run™ TestFile#2“Text™

Now, when you select Debug from the Main menu, the
following Debug menu would be displayed.

19~Hou—-53 5:17 am

jUse test data tile #1

ce Lest daba file B2

You can then select the debug command file you want from
this menu and the debugger will be invoked along with your
program and the desired test data file.

tEnter:

Each development data file can specify ane Enter taken.
The token is fcllowed by a command or series of commands
that are to be executed the first time the development
data file is brought into memory. For example, the
following token

iEnter:
Activate 'w'programs’Modem™Davice™

causes the modem to be activated when this development
data file is first brought into memory.

2-4 Program Development Guide

(i:) s Exit

slink

slink

Esrh development data file can specify one Exit token.
The token is followed by a command or series of commands
that are to be executed when you exit the GRiDDevelop
program. For example, the following token

sExit:
Deactivate 'w'programs’'modea™device™

causes the modem to be deactivated when you exit the
GRiDDevelop progran.

€ach development data file can specify one Link token.
Following this token, you can specify any number of
command lines, each terminated with a CR/LF. Typically,
this would include a command line invoking the linker
program and naming the files that are to be linked and the
resultant output file. The entire link statement is one
command line and must be terminated with a CR/LF. The
following is an example of the use of the Link token:

sLink:

Link ‘w'Dbjs’epMain.Pas™0bj*,
‘'w'0Objs ' epFolders.Pas™0bj*™,
‘W'Objs’epUtility.Pas™0bj™,
‘w'Objs'epFoermsInit.Pla™~0bj~, ExecPac™Font™,

'w'libs ' CompactException.Asa™0bi",

‘w'Libs ' CompactSystemCalls®Lib™ TO ExecPac™Run™ BIND
NOPURGE NOFASTLOAD PC(PURBE) ss{stack(2000})
PRINT('w'Lsts ' ExecPac™MP1™)

linkName:

1f more than one link file is needed (for example, when
linking overlays), then multiple links can be defined in a
Developeent file, The parameter linkName is displayed on
the Link form and you select which link command statement
is to be performed. You can specify as many of these
tokens as required in each development data file. The
following example illustrates the use of the Link linkName
token:

:Link Root:

LINK SampleRoot.Pas™0bj™, 'w'Libs'pB&rn0~lib™,
‘w'libs'pBérnt~lib™, ‘w'Libs'pBérn2™lib™,
‘w'Libs'pBérn3™~lib™, ‘'w'Libs'B8087*Lib",

G6RiDDevelop 2-7

'w' Libs LargeSystemCalls™Lib™,

Th SampleRoot™Lak™ OVERLAY(ROOT) NOPRINT

:Link Overlayl:
LINK Samplefverlayl.Pas™0bj",
‘w'Libs pB&rni™lib™,
‘w'Libs pBbérn3~lib™,

‘'w'tibs'pBérn2™lib™,
‘w'kibs B0B7~Lib™ TO

‘w'Libs'Dglarge™Lnk™

‘w'libg'pB&rn0™~iib™,

SampleOverlayl™Lnk™ OVERLAY(SampleOverlayt} NOPRINT

:Lipk Overlay2:

LINK Samplelverlay2.Pas™0bj™, 'w'lLibs ' pB&rn0™lib™,

‘w'Libs'pBérnl™lib™,
‘w'libs'p8brn3™lib™,
SamplelQverlay2™®tnk™ OVERLAY{Samplelverlay2}

:Link Rup Sample:
LINK SampleRoot™Lnk™, BamplelOverlayi“Lnk™,
SampleOverlay2™Lnk™ TD SampleRaoct™Run™ BIND

‘w'Libs'pBérn2¥1lib™,
"Wwilibs 8087*Lib~ TOD

S8(STACK(+1500)) PC(PURGE)

NOPRINT

Now, when you select the Link item on the Main menu, the
following Link form will be displayed:

16-Hou—33

6:81 am

I3 ves

Root
Overlayl
OuerlayZz
Run Sanmple

MO

Mo
Mo

Link: F1ll in form and confitm

You can then select which link command file{s) you want to

be executed from this form.

sListingss

You can specify one of these tokens in each development

data file.

The string you specify {(for example,

‘device'subject’) is automatically prepended to the

filenam=s that you have specified with the :Sources:

Program Development Guide

token

O

Q

1log

when those source files are compiled. The “LST™ extension
is automatically appended to the resultant files by the
compiler. Here is an example of using the :Listings:
token:

sListings: 'w'lLsts’

Then, if you compiled source files (fileNamel - fileNamed)
this would produce list files having pathnames as follows:

‘w'lsts ' fileNamel™LST™
‘w'Lsts ' fileName2™LST™
‘w'lsts fileNamed™~LST™
'w'lsts ' fileNamed4™LST™

Filer:r

You can specify one of these tokens in each developaent
data file. The pathname that you specify following the
token can be of kind Database or Text and the file can be
used to record or log your activities as you write, debug
and make changes to programs., If you specify a log file
of kind Database, the GRiDFile program will be invoked by
GRiDPevelop to dislay the contents of the log file. If
vou specify a kind of Text, GRiDWrite will he used to
display the file. If you do not specify a kind along with
the log file token, it is assumed that the file is a
database and GRiDFile is used. NOTE: this assumes, of
course, that you have the GRiDFile programs in your systena.

To make entries into the specified log file, select the

"Add entry to lag file" item from the main GRiDDevelop
menu. The following form is then displayed:

GRiDPDevelop 2-9

2= Jar-54 T

i)
[x2)
e
=

Humber L |
Usrsion

Module

Comment.

Loa file entry: Fill in form and confirm

The form provides four different fields that you can fill
oput to keep track of programming activities. The
information you put into each of the fields is entirely up
to the you but the form was designed with the following

uses in mind. (:j)

The first field, "Number", can be used to record such
things as error report or enrhancement request tracking
numbers. The “"Version™ field can be used to record the
version number of the program module(s) currently being
worked on. The "Mpdule” field can record the name of the
program module{s) being modified and the "Comment" field
can be filled out to describe the kinds of changes being
made to the modulef(s).

When you have completed the form with the information you
want recorded, press CODE-RETURN to log the entry. As
pach entry is made in the log file, GRiDDevelop
automstically appends the current date and time into the
log file as a prefix to each entry.

The Log file entry ferm is cleared as you confirm each
entry to indicate that the entry has been recorded. A
blank form is then displayved to allow additional entries.
To return tp the Main menu after logging entries, press
ESC.

Te examine the contents of a log fite, press CODE-T to

display the Transfer menu and then select the "Examine log
file" item. 1If the log file was specified with a kind of

2-10 Program Development Getde

Database, GRillFile will automaticaliy be invoked and you
can use the Find command (CODE-F! of GRiDFile to display
the tontents of the fi1ile. If the log file 1s of kind
Teut. GRiDWrite 1s invaked and the contents of the file
wiil be displayed automatically.

sName 3

You can specify one of these tokens in each development
data file. The string you specify iz avtomatically
displayed as the leading phrase in the message line of the
main GRilDevelop menu. For example, if you specify the
following with this token

tName: Sample Davelopment

the screen displayed by GRiDDevelop would be as shown in
Figure 2-3,

o—Jan-5d

1:56 pm

Edit list file

{EJit _=curce ¥ile |
Lomp) fa

Link

Compile and link

Test

Debus

Add erntra to log file

Sample Develaopient: Select item and confirm

Figure 2-3, Using the Name Token

10Objectsa

You can specify one of these tokens in each development
data file. The string you specify (for example,
‘device'subject’) is automatically prepended to the
filenames that you have specified with the :Sources: token
when those source files are compiled. The “Obj“ extension
is automatically appended to the resultant files by the

GRiDDevelop 2-11

compiler. Here is an example of using the :Objects:
token: (::)

:Objects: "w'Obis’

This would cause the object files produced by compilers to
have pathnames as follows:

‘w'Objs fileNamel™Obj"™

‘w'Objs'fileName2™0bj™

‘w'Objs'fileName3~0bji™

‘w'Objs'fileNamed4™Dbji~
{and so on)

|J=r'lef ixan

You can specify one of these tokens in each development
data file. The string you specify is the Bevice-Bubject
name or simply the Subject name where source files reside.
This lets you define source file names in the data file by
just specifying the Title: the prefix you specify will
automatically be prepended to the Title, After each
command, the prefix is reset to the Subject specified with
this token., Here are two examples of using the :Prefix:
token

tPrefin: ‘w''I1/0 Driver’ <::)

tPrefin: MyPrograms

s Print To:s

You can specify one of these tokens in each development
data file, The string you specify is prepended to the
destination filename before printing, It is useful for
printing to GRiDServer. Here is an example of the :Print
To: token

tPrint To: '‘Nexus.l:Printer Queue’'EpsonMX82*’

s SBources:

You can specify one of these tokens in each develcopment

data file. Following the token, you provide a list of

source filenames. Filenames must be one per line and can
include spaces. teading spaces are stripped unless

quoted. Each filename title must end with a suffix

indicating the compiler to invoked for that source file. <::)

2-12 Program Development BGuide

O

e g

The following title suffixzes are recognized by

GRiDDevelop:
.pas (Pascal!
el (PL/AM)
.asm f{Assembler)
.ftn {(FORTRAN)
Here is

an examplie aof the :Sources: token

:Sources:

ModelPriv.inc
ModelText.inc
FormsInit.plm

Unparse.pas

'Test Model.pas’

Nota that if the file name title ends with a suffix other

than one of the four recognized by GRiDDevelop, no
compiler will be invoked.

This lets you have "include”

files (.Ingc) be listed with your source files so that you
can easily edit them using the "Edit source file" coemand

from the Main menu of BRiDDevelap.

t S8ources groupName:

1f{ you have programs that have many source files, this

token lets you categorize a collection of source files as
p". Then, using the "Change source growups" itea on
the GRiDDevelop Hain menu, you can specify which groupl(s!}
of files are to be displayed for editing, compiling, and
so on. You cam specify as many of these tokens as required

a “grou

in each development data fiie,
illustrates the use of the :Sources groupName: token

:15ources Group 1:
Filel.Pas

1Sources Group
Filed4.Pas
FileS.Plm
Fileb,Asm

:Sources Group 3:
File?.Pas

File2.Plm

File3.Asnm

FileB.Plm

File9, Asm

The follawing example

GRibDevelop

2-13

2-14

Now, if you select "Change source groups" from the Main
menu, the form shown in Figure 2-4 15 displayed:

Z-Ho-53 12:15 am
o

Grous 1 Lies l
Group 2 KEE

Srogp 3 Tees

Source sroups: Fill 1n form and confirm

Figqure 2-4, The Change Source Groups Form

With all three groups set to "Yes" on this foram, you would

get a display similar to the screen shown in Figure 2-35
you select "Compile” or "Edit source file” from the Main
mENY.

S=Jan-84 153 pm
Yes Wesr with Dabug

Filel Paz {Ho |
FileZ. Pas 25

Filed Pas M

Filed . Ftn Hea

FileS Ftn M

Filec Ftn Hio

File?. PL” M

FileZ . PLM M

File2. ASH He

Lomplle source files: Fill in form and confirm

Figure

2-3. The Compile Form with All Broups Enabled

Program Development GBuide

if

O

O

@

I+ vou enable only groups | and 3 via the Change Source
Groups form, the Compiie form would be as shown in Figure
2-6.

&—.Jdar- 54

252 pm

File2 Paz
Filei Fas
File? . PLM
File= FLM
Filed ASH

2 O] I
i 1
Mo
Na
o
Hho

Complle source files: Fill in:form and confirmn

Figure Z-4. The Compile Form with Groups | and 3 Enabled

t Test:

Each GRiDDevelop data file can specify one Test token.
Foilowing this token, you can specify any number of
comnznd lines each of which must be ended with CR/LF. The
fecllowing is an example of the use of the Test token:

i Test:
GRiDPlan SampleData

Now, when you select Test from the Main menu, GRi1iDPlan
would be invoked along with the file SampleData,

t Test testName:

I+ more than one test command is needed;, then multiple
test tokens can be defined in a Development file. The
parameter testName is displayed on the Test form and the
user selects which of the test sequences is to be used.
You can specify as many of these tokens as reguired in
gach development data file. The following example
tllustrates the use of the :Test testMame: token

:Test GRiDFlans

GRiDDevelop 2-15

2-1&

GRiDPlan SampleData

1Test GRi1DPlpt:
GRiDPlot PlotTestData

Now, when vou select Test from the Main menu, the Test
menu shown below will be displayed:

18-tiou—-83

£: 29 am

Test: Salect item and confirm

You can then initiate the desired seguence by selecting it
from the Test menu.

USER-DEFINED TOKENS

You can define your own tokens which can have any number
of command lines associated with them. The tokens you
define are placed as items on the GRilDevelop commands
menu. For example, if you have the following tokens in a
development data file,

:Command Line Interpreter:
DevelopmentExecutive

:6RiDManager:
‘BRiDManager’

the Commands menu displayed when you press CODE-? would be
as shown in Figure 2-7,

Program Development Guide

O

O

O F-Jar-54 251 pm

i Lommand Line Interpreter |
G LUNanager
Change source aroups
ESC Retuwrn to main menu
Options Code-0 Set development characteristics
Buit Code-& Exit
Transfer Code-T Exchange, print files
Usage Code-4l Show memory usage

Cancel Code—-ESC Exit

Copiratnds - DOelech Ll atwd Cont? i

Yersion -34.12. 13 of GRillDevelop

Figure 2-7. The Commands Menu with User-Defined Tekens

Now, you can invoke the Development Executive program by
selecting "Command Line lnterpreter”, or invoke
6RiDManager by selecting it from the menu.

Command Modifier Characters

GRiDDevelop recognizes two characters that cam modify the
execution of command seguences that follow such tokens as
Bebug, Link and Enter.

I¥ the first character in a2 coamand line is a question
mark (?), then after the command is executed the system
will pause and not proceed until you press a key on the
keyboard.

I+ the first character in & command line is a semicolon
{(;), then the command that follows the semicolon is simply
ignored.

THE BRiDDEVELOP COMMANDS MENU

The Commands menu appears when you press CODE-? and
displays the items shown in Figure 2-7. (Remember, the
first two items 1n this figure are the user-defined tokens
we used as an example.} The items on the Commands menu

O

GRiDDevelop 2-17

2-18

are generally self-explanatery and should be familiar to

you from other GBRiD applications. Ths Options (CDDE-D)

and Transfer (CODE-T) commands, however, deserve scae {::)
additional discussion,

THE OPTIONS COMMAND

The Options command currently lets you specify only one
optiont whether to halt aon errers. If you issue this
command by selecting it from the Commands menu or by
pressing CDDE-T, the form show below is displayed:

18~Jan-24 16:30 am
o O
Halt on errors |ies]

Options: Fill in torm and contirm

I1f you specify "Yes" on this form, an error encountered
while compiling will return you to the GRiDDevelop main
meny after the module that produced the error has been
compiled. This prevents compilation of subsequent modules
that you may have specified via the Compile form. Only
compile errors will cause a halt; compiler warnings do not
prevent continuation.

1f you specify "No" on this form, errors encountered
during compilations are ignored and compilation of any
other selected modules will proceed, MNote that if you
have selected files to be both compiled and then linked,
the linkage will not be performed if any compile errors
are encountered regardless of the setting of the Options
form.

Program Development Guide

THE TRANSFER MENU

Figqure 2-8 shows the items on the GRiDievelop Transfer
menu which appears when you select the Transfer item from
the Commands menv or when ypu press CODE-T.

&—Jan—-54 2:1n pm

Lhiange this development tile
»change £ another
Examine log File
Eraze a file

Show characteristics of a file
Edit arna fFile

Print any file

Print list fileis)

Print source tileiz"

Transfer: Salact item and canfitm

Figure 2-8. The GRiDDevelop Transfer Menu

The second, fourth, and fifth items en this menu
{"Exchange for another file', "Erase a {file", and "Show
characteristics of a file"} operate just as they do in
other GRiD applications. They simply bring up a File fornm
that you fill out specifying the file(s) to be acted on.
The “"Edit any file" and "Print any file" iteas also bring
up the standard File form to let you select files for
editing with GRiDWrite or printing, The first itenm
{"Change this development file") and the last two items
{"Print Tist filel(s)" and "Print source file(s)" eperate
somewhat differently than in standard GRiD applications
and are described in the paragraphs that follow,

Changing the Development Data File

The first item on the Transfer menu, “"Change this
development file", lets you edit the contents of the
development data file currently being used to drive the
activities of GRiDDevelop. When you select this iteam,
GRiDWrite is automatically invoked and the current
development data is brought into memory. You can then
edit the dsta to meet the changing characteristics aof the

GRiDDevelop 2-19

development process. When you quit fram this editing
activity, you are returped to GRiDDevelop with the new
contents of the data fiie now driving GRiDDevelaop. (::)

Printing List and Source Files

The last two items on the Transfer menu, "Print list
file{s)" and “Print source filef{s)", let you select one or
more of your list/source files for printing. For example,
if you select "Print source file(s)" from the Transfer
menu, the form shown in Figure 2-9 is displayed.

S-Jan-co4 2:54 pm

BEY ves

Filel Pas iHo |

Filez Pas o

File3 . Pas Na

Filad.Ftn Mo

File5 . Ftn Mo

Files . Ftn Mo O
File? PLM i

Fila2 PLM Mo

File2. ASH Fo

Frrint source filets:: Fill ipn form and contirm

Figure 2-9. The Print Source File(s} Form

This form displays all of source files in the currently
enabled groups -- see the :Sources groupName: token -- and
lets you indicate which files or files are to be printed.
When you confirm this form, the indicated files will be
printed. For example, confirming the form shown in Figure
2-10 will cause source File2, File3d and File 9 to be
printad,

[

Prcgram DPevelopment Guide

O

- dan-Sd 233 pam
Ho WS

Filel Pas M

FileZ Pas Vs

File3 Pas Mo

Filed . Ftn Mo

FileS Ftn Yeas

Files Ftn Ho

File? PLNM |3

File2 FLM Hiz

File3 ASH Vs |

source . filelsy

Fill in form and confirm .

Figure 2~10. Printing Selected Source Files

The "Print list file(s)" form works in exactly the same
way as illustrated for "Print source filefiz)",

The list or source files specified will be printed at your

attached printer unless you have used the :Frint Ta: token
to redirect the output to a file,

ERiDDeveiop 2=2

CHAPTER 3, COMPILERS, LIBRARIES, AND INCLUDE FILES

This chapter describes the compilation procedures to follow to obtain an
object file from a program’s source file, and discusses the include files that
you may need for your programs and library files that are available during
linking.

COMPILING PRODSRAMS

The compilers for Pascal-B&, PL/M-Bb6, FORTRAN-84 and Asseambler-Bé
are described in the following Intel language reference manuals:

PASCAL-B& User's Buide
FORTRAN-B& User's Guide
PL/M-Bé6 User's Buide
Assembler-B4 User’'s Guide

The descriptions of the compilers in these manuals are comprehensive
but there are several considerations to observe when using thea on
the GRiD Compass system, These special considerations are discussed
in the paragraphs that follow.

Compiler Size Controls

Most of the compilers provide size controls - LARGE, COMPALT,
MEDIUM, SMALL. You must use either the compiler's COMPACT or LARGE
control. If either a program or a block of data used with the
program are larger than 64K, you must use the LARBE control;
otherwise use the COMPACT control since this will result in smaller
programs.

Since LARGE is the default for the Pascal-Bé compiler, you must

specifically specify COMPACT if that is what you desire. The
gefault for the PL/M-Bb compiler is SMALL: therefore you must

Compilers, Libraries and Include Files 3-1

LIBARIES

Pascal-Bé

explicity specify either the COMPACT or LARGE control when compiling
PL/M programs, With FORTRAN-B&, the only choice is the LARGE case:
therefore, FORTRAN programs must be compiled with this centrol.

When you purchase a language, each of the compilers is provided on &
diskette urnder the subject "Programs". Other files associated with

each language are provided on the same diskette as the compiler and

are listed in the paragraphs that follaw.

NOTE: the language diskettes also contain language specific include
files under the subject Incs. These files will be discussed at the
end of this chapter,

Libraries and Modules
The file named Pascal™Run™ is under the Programs subject and

contains the Pascal-86 compiler. The remaining files are under the
Libs subject and contain the run-time support libraries and modules.

pascal “Run® ~-- the compiler

pdérn0™~Lib™

p6rni™Lib™ Libraries that must be linked with
pBérn2™Lib™ the Pascal object module if you
pBbern3™~Lib™ use any of the Pascal I/0 calls,
rtnull™Lib™

DglLarge™Lnk™

14 you use the input/output routines provided by GR1D-0S and the
Conmon Code, then you should not use the Pascal 1/0 procedures READ,
READLN, WRITE, and WRITELN, and you need not link in the Pascal run
time libraries listed above. Instead, you need only link in the
GRiD-supplied library file "LargeSystemCails™Libs™" or
"CompactSystemCalls™Libs™ (depending on whether you are using the
LARGE or COMPACT size control when compiling).

NOTE: If you do not link in the Pascal runtime libraries then you
must not make any calls to Pascal [/0 statements. Also, the PROGRAM
declaration at the beginning of a Fascal program, dpo not specify the
module as "Input, Output" nor any other file names or you will get
link errors,

FORTRAN-84 Libraries and Modules

The file named Fortran“Run™ is under the "Programs" subject and
contains the FORTRAN-8& compiler. The remaining files are under the
Libs subject and contain the run-time support libraries and modules,
Unlike Pascal, when using Fortran you must always link an all of the
Fortran run-time libraries listed below,

3-2 Program Development Guide

O

O

fortran™Run® -- Fortran compiler

fBornd™Lib"™
tBernl1™Lib™
$846rn2™Lib™ Run-time Libraries
fBsrnZ™~Lib™
f84rnd™~Lib"™
BqLarge™Lnk™

PL/M-86 Libraries and Modules

The file named pla™Run™ is under the Programs subject and contains
the PL/M-8& caompiler. The other file contains the run-time support
libraries and is under the subject Libs,

plm*Run®™
pla*Lib™
DgLarge™Lnk™

8087 Libraries and Modules

These files contain the run time support libraries and modules
required by the B0B7 Numeric Data Processor and amust be included if
the program being compiled uses the B0B7., To determine if your
program uses the B087, refer to the apprapriate Intel language
manual. If you are not certain, then go ahead and link in these
libraries. The only penalty is a slightly longer time needed to
link,

pog7~Lib"™
B7null™Lib™
celB7¥Lib™
dconB87™~Lib
ehB7~Lib™

INVOKING THE COMPILERS

The compilers can be invoked automatically from GRiDDevelop if you
append the apprapriate langusge identification suffix to the source
file name (.Pas, .Plm, .Ftn. .fAsm). (See Chapter 2 for details.)
GRiDDevelop also lets you specify any compiler controls you regquire
via the GRiDDevelop data file described in Chapter 2.

If you do not use GRiDDevelop, you can invoke the compilers from a
command line (see Appendix A) by simply entering the compiler’s
name, for example plm or pascal, followed by the source program name
and any compiler controls., (Refer to the appropriate Intel language
manual for a description of compiler controls usage.) For exasple:

plm MyProgram.Plm*~Text™ LARGE DEBUG

Compilers, Libraries and Include Filesg -3

pascal MyProgram.Pas™Text™ NOLIST (:j)

fortran Myprogram.Ftn™Text™ XREF

THE SYSTEM AND LANBUAGE INCLUDE FILES

The language compilers provide an INCLUDE contrel that let you
include other source modules for compilation with your progranm.
(Refer to the appropriate Intel language manual for a description of
INCLUDE). The include files provided by BRiD are simply a text
insertion mechanism: they let you use the declarations of
GRiD-developed procedures and functions within your programs without
having to laboriously type all of thea into your source file.

There are several files that must be included during compilation of

your source programs if the program makes any direct, explicit calls
to the GRiD-0S. As you develop your own programs you will probably

develop your own groups of include files.

Two sets of include files are currently provided on the language
diskettes under the subject Incs: one for Pascal programs and one
for PL/M programs.

Pascal Include Files PL/M Include Files

Common. Inc*Text™ PLMLits.inc*Text™ (::)
OsPasTypes.inc*Text™ OsPlmTypes.inc™Text™
OsPasProcs.inc*Text™ OsPlaProcs.inc™Text™

ConPas.inc™Text" ConPlm.inc™text™

The Common,Inc™Text™ and PLMLits,inc™text™ files contain some
standard declarations used in the Pascal-Bé& and PL/M-B6 languages
and should always be included, The OsPasTypes.inc™Text™ and
OsPlmTypes.inc*Text™ files contain declarations of data types needed
if explicit 6RiD-0S calls are made. The OsPasProes.inc™Text™ and
OsPlmProcs.inc™Text™ files contain the definitions of functions and
procedures comprising the GRiD-05 calls. The include files above
should be included in the order in which we have listed thems to
avoid undefined symbol errors.

Many more include files are used to define the fupetions and

procedures available in Common Code. Refer to the Common Code
Reterence manual for information on other available include files.

3-4 Program Development Guide

(::) Examples of Include Control Statements
The following examples illustrate the format of typical INCLUDE
controls far the compilers as they would be stated within your
“Text™ source file,

NOTE: The dollar sign {$) must be in columan 1 of your source file to
be recognized by the compilers.

Pascal-Bé Example:

FINCLUDE (‘w'incs'Common.Inc*Test™)
$§INCLUDE ('w’incs'ConPas.Inc™Text™)
$INCLUDE ('w'incs'OsPasTypes.Inc*Text™)
$INCLUDE ('w'incs OsPasProcs.Inc*Text™)

PL/H-86 Example:

$INCLUDE ('w'incs'PlaLits.Inc*Text™)
FINCLUDE ('w incs ConPla.Inc*Text™)
FINCLUDE (‘w'incs'OsPlmTypes.inc™Text™)
$INCLUDE ('w incs OsPlmProcs.Inc™Text™)

Compilers, Libraries and Include Files 3-5

CHAPTER 4., THE LINK PROGRAM

The Link pregram combines relocatable object modules produced by the language

compilers and resclves references between independently compiled modules. The
input to the Link program is a list of files and optional controls; the output
is a single object file and (optionally) a print file.

The Link program is thoroughly described in the Intel manual "iAPX 86,88
Family Utilities User's Guide" which is supplied with development systems.
Refer to this manual for a complete description of Link including descriptions
of some potentially useful controls that are not covered in this chapter.

This manual also describes the Librarian (Lib) and CREF (cross-reference
listing generator) programs that are supplied with development systems.

INVOKING THE LINK PROGRAM
The general syntax of a link invocation is

LINK inputlist TO outputFile™Run™ BIND SS5(STACK(+nnnn})
{controls}

Hhere:

inputlist eontains the filenames of object modules
and librarieas.

outputFile the filename that is to receive the linked
output medule that the Link progranm
produces,

BIND is a control that must always be specified
in the final link of a program to cbtain a
load time locatable module.

SS5(STACK (+nnnn)) is a control that must be specified to

The Link Prooram 4-1

obtain a sufficiently large stack Segment
Size (55) for program erecution.

centrols are the ootional cantrols {(summarized in
Table 4-1) that modify the standard
pperatian of the Link progranm,

Each pathname in the inputlist is separated from the preceding file
name by a comsma and the tast pathname in the list is separated from
TG by a space, For example:

LINK ‘v MySystem'MyFilel™Obj~, 'w'MySystem'MyFile2“0bj,
“‘w'Libs CompactSystemCalls Lib™ TO 'w MySystem NewFile“Run®
BIND SS{STACK(+1500))

The pathname of the output file 15 separated from TD by a space, and
any controls you specify are separated from each other by a space.

LINK INVOKATION EXAMPLES

The following example takes the Pascal object module named
MyFile.Pas“Dbj“, links it together with several of the Pascal and
8087 library modules located under the subject 'w'libs and produces
a linked and bound ocutput module named MyFile“Run®.

LINK MyFile.Pas“¥Bbj~, 'w'libs'PBARNO~LibY, 'w'libs PBARNI™Lib™,
"w'libs'PB&RMN2™Lib~, ‘w'libs'PBARN3™Lib™, 'w'libs'CELB7™Lib",
"w'libs'EHB7™Lib™, ‘w'libs'80B7~Lib™, 'w'libs 'DCONB7™Lib™,
"w'iibs'DglLarge™Lnk™ TO MyFile“Run™ EIND SS(STACK(+1500))

PL (PURBE)

NOTE: You can put this link invocation seguence into a GRiDDevelop
data file and then initiate the link operation froam the GRiDDevelop
menu. See Chapter 2 for examples. If you do not use GRiDDevelop,
you can craate a2 command (“Com™) file and then initiate the link
with the Do program. Gee Appendix A for examples of command files.

If you do not use any Pascal input/output procedures then you need
not link in Pascal run time libraries (PBARNO-PBGRN3) nor the
‘w'libs'Dqlarge~Lnk™ file: Instead, simply link in the file
"w'Libs ' CompactSystemCalls™Lib™ or 'w'Libs'LargeSystemCalls™Lib™ to
obtain the GRiD I/0 procedures. In this case, the link invocation
sequence would be:

LINK MyFile.Pas“Obj~, '‘w'libs'CELB?™Lib™, ‘w'libs'EHE7™Lib",
‘w'libs B087~Lib~, 'w'libs DCONBY*Lib™,
'w'libs'CompactSystemCalis™Lib™ TO MyFile™Run™ BIND
SS(STACK(+13500)} PC(FURGE)

4-2 Program Development Guide

O

The following euample shows the link commands for a FORTRAN program:

LINK MyFile.Ftn*Dbj~, "w libs'FBARNO™Lib™, 'w libs FB&RN1“Lib",
‘w'libs'FBAGRN2YLib™~, 'w'libs FB&RNI*Lib™, 'w libs FBORN4™L1b™,
‘w'libs CELB7~Lib™, "w'libs EH87~Lib™, 'w'libs 8BOB7“Lib",

"W libs DCONB7™Lib~, 'w'libz DglLarge™Lnk™ TO MyFile“Run™ EBIND
SS{STACK (+1500) PC{PURGE)

LINK PROGRAM CONTROLS SUMMARY
Table 4-1 summarizes the controls available with the Link progranm
that are described in this chapter and showns the default setting

for each control.

Table 4-1, Summary of Link Controls

Control Abbrev. Default
ASSUMERDOT (pathHName) AR -
BIND ! NOBIND BI 1 NOBI NDEINE
FASTLOAD ! NOFASTLOAD FL ! NOFL NOFL
MAF | NOMAP MA NOMA MAF
NAME NA &=
OVERLAY | NOOVERLAY ov & NOOV NOOVERLAY
PRINT (pathMName) | NOPRINT PR | NOPR PRINT
PRINTCONTROLS {PURGE) PC
PURGBE | NOFURGE PU | NOPU NDPURGE
SEGSIZE (STACK{+nnnn)} 55 =

The Link Program 4-3

ASBUMEROOT

Syntax Abbreviation Dafault (::)
ASSUMERDOOT (pathName) AR et
Definition

ASSUMEROOT is used only in conjunction with the OVERLAY control and
suppresses the inclusion of any library modulef{s) in an overlay if
those modules have already been included in the root file identified
by pathName. ASSUMERDOT causes the root file to he scanned, and all
external, undefined symbols in the overlay modules which have a
matching definition in the root file are marked "temporarily
resolved.” This marking means that while a library search for the
symbols will not be made, their status remains externally undefined
until the overlays are linked with the root. GSee Appendix B for
examples of the use of ASSUMEROAOT.

BIND 1| NOBIND

Syntax Abbreviation Default
BIND B1 NOBIND
NGBIND NOBI
Definition
BIND combines the input modules into a load-time-locatable module (::)

that can then be loaded and executed. Since the default for this
control is NOBIND, you must always explicitly specify the BIND
control during the fimal link to obtain a module that can be loaded
and executed under GRiD-0S5.

4-4 Program Development Guide

FASTLOAD | NOFASTLOAD

Definition

MAP

Definition

Byntax fihbreviation Default
FASTLOAD FL NOFASTLOAD
NGFASTLOAD NOFL

FASTLDAD reduces program loading time and also produces the most
compact object file. Loading time is reduced by concatenating data
records to a maximum length of &4K. The object file size is reduced
by removing such information as local symbols, public recaords,
comments, and type information {unless the object file contains
unresolved external symbols). To obtain an executable object file
of the smallest size, use the both the FASTLOAD and PURBE link
controls,

The FASTLOAD control should not be used if you are going to be
debugging the program,

NOMAP
Byntax Abbreviation Default
MAP Mh MAP
NOMAP NOMA

MAF produces a link map and inserts it in the PRINT file (“MPi™)
that is generated by the Link program. (The PRINT file is described
at the end of this chapter.) The link map contains inforeation
about the attributes of logical segments in the output module. This
includes size, class, alignment attributes and overlay name (if the
segment is a member of an overlay). [If you specify NOMAP, the PRINT
file will not include a link map.

The Link Program 4-3

e

NAME

Syntax Abbreviation Default

NANE (moduleNane) NA Module keeps
current name

Definition

NAME assigns the specified moduleName to the putput module’s header

record. If you do not use the NAME contrcl, the output module will

have the name of the first module in the input list, Note that NAME
does ngt affect the output file's name; only the module name in the

output module’'s header record is changed.

The moduleName may be up to 30 characters long and may be composed
of any of the following characters in any order: guestion mark (7),
commercial at (8), colon (:), period (.), underscore (_},
A,B,C,...2, Oor 0,1,2,...%., Lower case letters may be used, but they
are automatically converted to uppercase by the Link progranm,

OVERLAY | NOOVERLAY

Byntax Abbreviation Default
OVERLAY{{overlayName)} oy NOOVERLAY
NOOVERLAY NODV

Definition

OVERLAY specifies that all of the input modules shall be combined
into a2 single overlay module. If you specify the optiaonal
overlayName argument, all segments contained within the overlay
module have that name in addition to their segment names and class
names. If no cverlayName is specified, the Link program uses the
module name of the first module in the input list as the
averiayName.

You must link each overlay in a program separately before you link
all the overlays into a single cbject module. When linking root and
pverlay files, the Link program assumes that the first file in the
invocation line is the root. When you call the operating system to
load the overlay, you must use the same overlay name that you
specified (overlayName) with this DVERLAY control. &ee Appendix B
for a complate description of overlays.

4-6 Program Development Guide

PRINT | NOPRINT

O

Byntax Abbreviation Default
PRINT{(pathName)} PR PRINT (objectFile“MP1*)
NOFRINT NOFPR

Definition

PRINT lets you specify the pathname for the PRINT file created by
the Link program. (The PRINT file is described at the end of this
chapter.,}) If the PRINT control is not specified or if the control
is given without the pathName argument, the print file will have the
same pathname as the object file output by the Link program except
the Kind extension will be “MPI1™ instead of “RUN™, NOPRINT prevents
the Link program from creating any print file.

PRINTCONTROLS (PURGE)»

Syntax Abbreviation Default
PRINTCONTROLS (PURGE) FC(PU} S
Definition
J PRINTCONTROLS{PURGE) remaoves all information about the debug or

public records from the print file (MP1} produced by the Link
program and thus significantly reduces the size of that file.

The Link Progran §-7

PURGE

Syntax Abbreviation Default {jf)
PURGE PU NOPURGE
NDPURGE NOPU

Definition

PURGE removes all of the debug or public records from the object
file and their information from the print file. If you specify both
the FASTLOAD and PURGE controls, you will obtain the most compact
putput object file possible., The records that would be included by
NOPURGE and NOFASTLOAD are useful when debugging programs, but are
unnecessary for producing executablie code.

SEGSIZE

Byntax Abbreviation Default
SERSIZE(STACK (+nnnn)} SS5(STACK (+nnnn)) ==

Definition

space needed for the stack segment. The rompilers automatically
determine how much stack a program needs. If your program did not
call any common code or GRiD-05 routines directly and has no
re-entrant procedures, the compilers will generate the correct size
stack. However, if you do call common code or BRiD-0S routines,
they also use your stack and you must increase the size of the stack
accordingly. There are no hard and fast rules for the amount of
stack you will need. A good first approximation is #1900, If you
have & program which erashes in unexpected ways, the first thing you
should try is to increase the stack size further,

BEGSIZE(STACK (+nnnn}) specifies the amount of additional memory (::)

MOTE: 1f you omit the plus sign from the size specification, it is
treated as the absolute size of the stack segment and could cause
failure from an insufficient stack,

4-8 Program Development Guide

THE LINKER'S PRINT FILE

(::) The Link program always creates a print file unless you specify
NOPRINT. The optional pathName argument to the PRINT control
designates the name of the print file. The default name is the name
of the output object file but with a Kind extension of “MF1™,

The print file may contain as many as five parts:

A header f{always present)

A link map (unless NOMAP specified)

A group map falways present}

A symbol table funless PURGE or PC(PURGE) specified)

An error message list (always included when errors occur)

o B = R v Y o B |

Most of the information contained in the print file is used for
diagnostic purposes when constructing such things as system loaders
and will be of little or no interest to most programmers. The only
parts of the print file that may be of general interest and use are
the unreselved symbols list which is part of the link map and the
error message list st the end of the print file,

The unresolved symbol list itemizes each external symbol whose

public definition was not encountered. The module that references

the unresolved symbol is also indicatad. The printed message that

appears under the heading UNRESDLVED EXTERMAL NAMES is as folliows:
(::) symbolName IN pathName{moduleName)

Warrning messages are listed consecutively as warning situations are
encountered. They may appear before or after the link map,

Errors always terminate processing - an error message will always be
the last line in the print file, For a discussion of the
interpretation of individual messages, refer to Appendix D.

O

The Link Program 4-9

y

CHAPTER 51 THE DEBUBBER

The debugger program (Debug) is a sysbolic, interactive, eultitasking debugger
for high-level languages. It lets you debug praograms at the source level hy
examining a program as it executes. Debug lets you:

o Set breakpoints in the program so you can check the progress of program
execution at any peint. You can set breakpoints at a line number, at a
procedure beginning or end, upon return from a procedure, or at a memory
location,

o Display/examine the contents of variables, memory locations, and registers.

o Change the contents of registers, aemory locations, and variables.

o Dump the contents of memory in both hexadecimal and ASCII formats.

o Check the status of system amultitasking aperations by displaying
information concerning processes, semaphores, and messages.

o Alternate between two screens, one for the debuger and the one being used
by yaur progras.

Some of the debugger commands are invoked by pressing CODE and one other key,
while others are invoked via a command line. The commands are listed in Table
5-1 and will be described in alphabetical order in the pages that follow. The
CODE-key commands are described first and then the command line commands.

The Debugger 5-1

CODE-KEY Command
? display help info
B set Breakpoint
C Clear breakpoint
D Duplicate last text line
E invoke development Executive
I display Info, options
L display current Location
by display tasks Messages
a set/change Options
P Proceed program execution
g RBuit the debugger
R display Registers
T display Tasks, semaphores
W toggle Windows
ESC ESCape from the debugger
Command Line Commands Syntax
Display Address B{name>
Display Value {name!absMem>
Assign Value {namer={expression>
Dump/Change Memory {absMem:=
Dump <{len} Bytes {nameiabsiem> {len>
Table 5-1. Debugger Command Summary
COMPILE AND LINK CONSIDERATIONS

In order to view symbol names and line numbers, the program to be
debugged must be compiled with the $DEBUG option specified, and the
PURGE and FASTLOAD controls in the Link program must not be
specified (NDPURGE and NDFASTLOAD are the defaults for these
controls).

INVOKING THE DEBUGSER

The Debug program can be invoked by issuing the following command
via the command line interpreter of the Development Executive
program {described in Appendix A):

DERBUG programMame [parametersl

Note: You can also invoke the Debug program from GRiDBDevelop.
See Chapter 2 for details.

The optional parameters are those that might be needed by the
program being debugged.

3-2 Program Development Buide

O

When it is invoked, the debugger creates a set of debugging files
{72ZDEBUG.MOD, ZIZDERUG.FPUBR, 2ZIDEBUG.SYM, 2ZIDEBUG.TYF, and
LIIDEBUG.WIN). These are information files used by the debug
grogram and reguire approsimately the same amount of disk space as
the program module occupies,

Atter creating these files, the debugger displays its prompt
character, an asterisk (#). You can now issue the debugger
commands,

DEBUGGER SYNTAX AND TERMINOLOGY

The following syntar conventions and abbreviations are used
throughkout this chapter,

decimalConstant -- a number composed of the digits 0 through 9.

hexConstant -- 2 decimal digit (0-%) followed by any combination of
hex digits (0-%9,A,B,C,D,E,F) and ending with the character "H".
For example, OFFEBh.

absMem -- an absplute memory address with the segment value #ollowed
by i colon and ending with the offset value. For example,
0001h:OFFEh or #AX:#IP (see register notation below).

register -- the number or pounds character (#} followed by the
standard Intel symbo! for BOBb registers. For example, #AX and
#5P,

number -- a decimal constant. hex constant, register reference, or

an equation composed of thase simple math operations {+,-,%,/)
and unary plus and minus. Note that equation operators are

evaluated from left to right -- there is no operater
precedence.
line# -- any number that has a corresponding statement number in the

source code.

varName -- the name of a variable in the program being debugged.
procName -- the name of a procedure in the program being debuaged.
module -- the name of any module in the program being debugged.

If the varName, procName, or line# you want to refer to is in the
current module being debugged, you need not precede the name with
the module name. If you want to refer to a name or line# in another
module, explicit module references can be made by preceding a
varName, procName, or line# with the module name and a colon (:),
For example:

[—4

The Debugger 5-3

NEWMOD: BESTPROC (::)

References to a varName or procName that is in the public domain are
made by prefixing the name with a colon {:). Fer example:

: PUBPROC

CODE-KEY COMMANDS

Many of the debugger commands can be initiated by simply pressing
one of the standard keyboard keys while holding down the CODE key,
The paragraphs that follow describe these commands in alphabetical
grder.

THE HELP (CODE~-?) COMMAND

This command displays a brief summary of the debugger commands --
both the CODE-key and command line commands. When you press CODE-?
you will get the folleowing display:

All Input Ends with Confirm
ESC Key Aborts Any Command

COMMAND LINE

g{name" Display Address

{name;absMen? Display Value
{named={expression: Assign Yalue
<abslMemd= Dump/Change Memory
{nameiabsMem> <len> Dump <len> Bytes
CODE-KEY
? this heip info
B set Breakpoint
c Clear breakpoint
I display Info, options
M display tasks Messages
] set/change Options
P Froceed program execution
1] Quit the debugger
R display Registers
T digplay Tasks, semaphores
W toggle Windows
ESC ESCape from the debugger

S-4 Program Development Guide

@)

THE SET BREAKPOINT (CODE-B) COMMAND

This command allows you ta set breakpcints in your program so you
tan monitor program execution. VYou can specify the breakpoints by
line number, absolute memory address, or by procedure name., You can
also specify that a break occur after the breakpoint has been
reached a certain number of times., If a procedure name is used to
specify the breakpoint, you can also specify whether the break
should be at the beginning or end of the procedure, or upon return
from the named procedure.

When you press CODE-B, the debugger prompts you with the following
message:

Set Breakpoint At: [(previousBreakpoint)

If you have previously set breakpoints, the most recently
established breakpoint will be displayed after the prompt message.
1f this is the first breakpoint that you are setting, the field
following the prompt message will be blank. If you want to set a
new breakpoint, backspace to erase the displayed previous
breakpoint. You can then enter an absolute memory address, line
number, or procedure name and press CODE-RETURN.

If you enter a procedure name, you will be prompted with:
Regin/End/Return: B

The supplied default choice is B {for break at Beginning of
procedure. If you want one of the other choices, backspace and then
enter £ (for break at End of procedure), or R (for break on Return
from procedure)., Then press CODE-RETURN.

You will then be prompted with:

Break After Count:l
Note that the debugger supplies a default value of 1, indicating
that the break should be made the first time this breakpoint is
encountered. [f you want some other value, simply backspace to
erase the "1" and enter the value you want., Then press CODE-RETURN.
The debugger will output the following message:

Entered as Break Table Entry #n

The debugger maintains a table that defines the characteristics of
each breakpoint you specify, It sequentially numbers each
breakpoint (beinning with 0) as you specify them. You can examine
this table using the CODE-] command,

NDTE: A random breakpoint can be caused at any tise by pressing

The Bebugger S5-5

CODE-EHIFT-ESC,

O

THE CLEAR BREAKPDINT (CODE-C) COMMAND

This command clears a breakpoint that you have previously set (using
the CODE-B command). The number of the breakpoint is the number
assigned to it by the debugger when you set the breakpoint., (You
can check this number using CODE-I). If you enter an asterisk (¥)
instead of a number, all breakpoints will be cleared.

THE DUPLICATE LINE (CODE-D} COMMAND

This command causes the last line of text entered via the keyboard
to be displayed again.

THE EXECUTIVE (CODE-E) COMMAND

This command causes control to be passed to the Development
Executive interface. The prompt character for this interface (->)
will immediately be displayed and you can then use any of the systea
utilities that are described in Appendix C. Toc return to Debug from
the Development interface, press CODE-Q and then CODE-RETURN: the
Debug prompt character (#) will be displayed. The state of your
debugging session will remain unchanged.

THE INFO (CODE-1) COMMAND

This command displays all the breakpoints set in the break table and
also displays the current configurations of the options and system
memory utilization as shewn in the following example:

Count Occur B/E Break Location

1 000Ch: OFFFEhR
:ReadHex:: 1BS

B Main:Factorial:ioo

R :PutChar

o L Y e~ 3
LT S R
= A

Default Module Name: CurMod
Alternate Window: Y

Memory Available {Bytes): nnnnnn
Memory Allocated (Bytes): nnannon

THE LOCATION DISPLAY (CODE-L) COMMAND

This command displays the current location within the program being
debugged. The format of the information displayed depends on the
type of data available to the debugger: it may consist of just a
memory address, or it may be a statement number, procedure name,
variable name or some combination of these.

O

5~46 Program Development Guide

THE MESSAGE DISPLAY (CODE-M)} COMMAND

This command displavs the current messages (if any) of the curreat
The list 1ncludes the sending process 1D, the
message class, the note (if any} and the address for each message.

{running) process.

THE OPTIONS (CODE-0) COMMAND

This command lets you change the defaulf module name or thange ths

alternate window choice.

THE PROCEED (CODE-P) COMMAND

This command simply allows program execution to proceed or continue,
Execution will stop either when a breakpoint is reached, when
CODE-SHIFT~ESC 15 pressed, or when the program completes execution.
You can also programmatically provide breaks by breaking on :zero
overflow, out of range, and so on by using the appropriate compiler
controls (such as CHECK on the Pascal-Bé& compiler). HNOTE: you
cannot use CODE-P to restart a program that has compieted execution
-- you must reinvake the debugger and start from the beginning since
control normally returns to the executive program at this point.

THE BUIT (CODE-Q) COMMAND

This command is used to exit from the
actually occurs, you will be asked to

THE REGISTER DISPLAY (CODE-R) COMMAND

This command displays the contents of

following format:

AX BX
annnh annnh

IP FL
prannh nanonh

cX
annnh

DX
nnnnh

SP
nnnnh

CSs
nnnah

debugger. Before the exit
confirm that you want to quit,

all the B0B6 registers 1n the

BP 51 Bl

nnnnh nnnnh nnnnh

DS 1] ES
annnh nnnnh nnnnh

The Debugger 5-7

THE TASKS/SEMAPHORE DISPLAY (CODE-T) COMMAND O
This command displays a list of all processes on the process gqueue
and all semaphores on the semaphore gueue. The format of the
disptay is shown in the following example:

ProclD State Pri Pid/Sem TimebLmt #Msgs MemUsed

s 3561 semdait | 3508 0 0 54656

s 3632 msgwait 1 45535 0 0 ai2

s 3483 ready | 0 0 0 43856

s 3799 msgWait 1 3787 0 0 512
3787 running 128 0 0 0 2896

s 3489 ready 200 3513 0 0 LY

s 3549 1padPkg 233 0 0 0 20576

SemalDd Count Note Busy Creator

3527 0 0 0 3485
3303 { 0 3578 3489
35901 0 0 65335 3489

If a line is preceded by the letter "s", it means that the process
on that line is a system process f{actually, any process that was
created before yours), The ProclD column, gives the process
identification number assigned by GRiD-05 when the process was
created. The State column gives the current state of each process. .
The possib = states are the following: running, ready, message wait,
semaphore wait, timed wait, timed message wait, timed semaphore
wait, or a loaded package (such as common). The Pri column gives
the current priority of each process. The Pid/Sem column lists
either the process being waited on (if in a message wait) or the
semaphore being waited on (if in a semaphore wait). The Timelnmt
column indicates the time remaining to wait on a timed semaphore or
timed message wait. The #Msgs column gives the number of messages
on the message queue of each process. The MemlUsed column lists the
bytes of memory used by each process.

The semaphore information is listed after the task information. The
SemalD is the identification number assigned to the semaphore by
GRiD-05. The Count column lists the number of processes waiting for
each semaphore. The Note column gives the note (if any} that was
included with each semaphore. The Busy column lists the most recent
process waiting on each semaphore. The Creator column gives the
identification number of the process that created each semaphore.

THE WINDOW TOBGLE (CODE-W) COMMAND

This command toggles or switches you baek and forth between the
debugger window or screen and the appplication window.

&

3-8 Program Development Guide

COMMAND LINE COMMANDS

The commands described in the paragraphs that follow are initiated
by entering text via a command line in response to the prompt (%)
character. These commands let you display the addresses and
contents of various preogram locations, assign values to registers,
memory locations and program locations, and dump the contents of
memory.

THE DISPLAY ADDRESE COMMAND

To display the address of a variable, procedure, line number or
memory location, type "€" followed by the varName, procName, line#,
or absMem. The debugger will display an equal sign (=) followed by
the address in the format "segment:offset". For example:;

€189 = 07AFh:02A6h (1%947:478)

Note that the address is diszplayed in both hex and decimal formats.

THE DISPLAY CONTENTS COMMAND

To display the contents of a variable or memory location, type the
varName or absMem location followed by CODE-RETURN. The debugger

will display an equal sign {=) followed by the value of the
specified item.

Variables are displayed according to the format they were declared

in, For example, assume that you have declared a variable named ‘a‘
as follows:

a : ARRAY [1,,10]1 OF Char;

You could display all characters in the array by typing the variable
name f{a} and pressing CODE-RETURN or you could display the fifth
element in the array by typing:

al51]

NOTE: You can terminate the display of a long variable structures by
pressing ESC.

Lacal variables can only be displayed if you have broken within the
procedure where the local variaktles are defined.

The contents of a specified memory location (absMem) are displayed
as a byte value.

You can also display the contents of a variable at one memory

The Debugoer 5-9

location as though i1t were of the type of another variable., The

syntax for this 1s:

varMamel AS varNameZ2

This would cause the contents of varName! to be displayed using the
type associated with varMamel,

THE ABSIGN VALUE COMMAND

To assign a value to a variable or memory locatien, type varName ar
ahsMem followed by an equal sign and the value to be assigned. The
value assigned will be echoed back and displayed, For example;

#1975:478=7EBh
Value Assigned = 123 (7Bh, “{", true)

Note that the value echoed back from a memary location is displayed
in decimal, hex, ASCII interpretation (if printable), and boolean
value.

You can assign values to any simple type variable except Reals. If
the value you assign is larger than the value type for varName, the
value is truncated to the appropriate size. Values assigned to
memory locations are assumed to be of type Byts,

THE MEMORY DUMP COMMAND

To display the contents of a section of memory, type the variable
name, procedure name, line number or memory address indicating the
starting location where the dump is to begin. Then type one space
and a number (byteCount) indicating the number of bytes to be
dumped. The memory contents will be displayed in tabular form with
8 values par line beginning on the line following the request, If
the last line is shaort, it is filled out to a length of B, The
format cf each line is starting memory address {for that line), B
hex values, B ASCII values. For example:

*078fh:02abh 20

Address = 07BFh:02A6h (1935:678)

02A4h BBh 0Eh E2h OCh 4%h CEh BBh 1&h *....I...#
02AEh E4h OCh 42h CEh B89h S6h FAh 3Bh *..B..V.3#
02B7h 4Eh FAh 7Fh IBh B9h 4Eh F8h BBh #Nj.N..#

Note that if a memory location contains a value that is not a valid,
displayable ASC!I character, a period (.) is displayed in the ASCII
field of the dump digplay.

You can terminate the display of a large memory dump by pressing

£-10 Program Development Buide

O

b

D

ESLC.

THE EXAMINE/CHANGE MEMORY COMMAND

This command lets you sequentially examine bytes of memory and then
either change the contents of each location or leave the contents
unaltered. To initiate the display of memory contents, type the
variable name, procedure name, line number, or memory address
indicating the starting location where the examination is to begin
followed by an equal sign (=), After you've typed the starting
location, the egual sign, and pressed CODE-RETURN, the REMOTY
address and current contents of that address will he displayed in
hex. VYou can then type in a new value to replace the existing value
or press CODE-RETURN to leave the existing value unchanged. The
debugger then displays the next sequential address and its contents.
This sequence continues until you enter a period (.) or E5C to
terminate the command., For example:

141=CODE-RETURN

G7AFh:02A6h = BRh 7Bh CDDE-RETURN
07AFh: 02A7h = OEh CODE-RETURN
07AFh:02ABR = E2h CODE-RETURN
07AFh:02A% = 0Ch FFh CODE-RETURN

07AFh; 02AAR 7Bh . CODE-RETURN

This ssquence begins examining memary contents at line number 141
which is at memory address 07AFh:02A4h. This starting location
contains BBh and the contents are then changed to 7Bh. The contents
of the next two locations are displayed and left unchanged, The
tontents aof memory location O7AFh:02A9h are changed from OCh to FFh
and the command is then terminated after the contents of the next
location are displaved.

The Debugger 5-i1i

APFENDIX A. ALTERNATE DEVELOPMENT APPROACHES

Although the GRiDDevelop program described in Chapter 2 is powerful
and easy to use, there may be rcertain tasks or situations where you
prefer another approach. Or, perhaps your personal preference due
to past experience on development systems may lead you to seek a
different, more familiar approach. To meet these needs, several
other approachez are provided and have been used at BRiD prior to
the availability of BRiDDevelaop.

Let's now look at alternatives to GRiDDevelop: the Developnent
Executive program and coamand i{“Com™) files used with the Do
progranm,

fAlternate Development Approaches A-1

USING THE DEVELOPMENT EXECUTIVE PROGRAM

A-

-
£

The DevelopmentExecutive program is a command line interpreter that
lets you enter text strings to initiate commands. The system utility
programs (described in Appendix €) comprise the commands that you

enter via the command line. NOTE: In this context, the compilers

and the linker program can alspo be considered as “"utilities" and can

be invoked from the command line.

You get into the DevelopmentExecutive program by selecting it from
the File farm. The DevelopmentExecutive interface displays an arrow
as its prompt symbol and the prompt symbol is accompanied by a
blinking triangle -- the system cursor. Figure A-l shows the screen
displayed by the DevelopmentExecutive program,

=k,

Ver-zion 3.8.8
UEUHIUPmeﬂf Ex

for CCOS »= 38.4.173

Figure A-1. The DevelopmentExecutive Interface

Whenever the prompt symbol and the cursor are displayed, you can
enter tesxt to specify the utility program that is to be run and any
parameters that the program requires., The cursor shows you where
the next character vou type will appear on the screen. You can edit
the command line by moving the cursor using the leftArrow and
rightArrow keys and erasing entries or portions of entries with the
BACKSPACE key. VYou can retrieve the last command line entered by
pressing CODE-D.

The command line is terminated and the command presented to the
system by pressing RETURN or CODE-RETURN., Thus, only a single
command at a time can be issued via the DevelopmentExecutive,
Therefore, in order to compile several modules, you have to invoke
the compiler from the command line for each module after the
preceding module compilation had been completed. Then, you must

Program Development BGuide

USING THE

type in the lengthy linker 1nvocation sequence from the command
line. If any errors are encountered along the way, you must repeat
the entire sequence, performing each step one at a time.
Fortunztely, there is a way of simplifying this procedure while
using the DevelopmentExecutive. VYou can create command (“Com™)
files and initiate them from via the command line interpreter or by
selecting them from the File form,

DO PROGRAM WITH COMMAND FILES

The Do program lets you execute a prearranged sequence of commands
contained in a special file -- a command file. The Do program reads
the commands from the file and presents them one at a time to the
command line interpreter of the DevelopmentExecutive as though yau
were typing them in via the keybpard. A command file canm contain a
single command, a command with a long list of parameters, or
mulltiple sequences of commands. Thus, command files save ypu time
and eftort by letting you create ‘canned’, reusable command
SEqUENCES,

To create a command file, follopw these steps:

1. Using BRiDWrite, create a file that has each command {(and any
parameters) on its own line.

2. End each command line with a carriage return, Note: Be sure that
you put a carriage return in at the end of the last line.

3. Save the file specifying a Kind of “Com™.

To execute a command file from the DevelopmentExecutive, type the
command Do and follow it with the file's pathname. You don't have
to inciude the kind -- “Com™. The execution syntax is:

Do pathname

Let's look at an example which illustrates the power of command
files to simplify the program development process. Earlier in this
chapter, we gave examples of compiler invocations and a linker
invocation initiated from the DevelopmentExecutive command line.

The two compiler invocation commands and the linker invecation could
all be placed in a single command file that would look tike this:

Pascal ‘wO'MyPrograms'Shell.Pas™Text"™

PLM w0 'MyProgram'FormsInit.Pla*Text™

LINK "wQ'MyPrograms“Shell.Pas™0bj"~,

‘w0 MyPrograms‘FormsInit.Plm™0bj™~, 'wO'Libs DataForms.Pas™Obj",
"wO'Libs'largeException.Asm™0bji™,

"wh libs'LargeSystemfalls™Lib™ TQ ‘w0 'MyPrograms'Shell~Run®™
BIND PURBE FASTLOAD PC(PURBE) MAP ss(stack{+1500))

If this command file were named 'w0'MyProgram CompilelLink™Com™, you

Alternate Development Appropaches A-T

could cause the sntire sequence to be e:xecuted by issuing the
following command to the DevclopmentEuecutive: (::}

Do ‘wid'MyPrograms Compilelink

First, the Pascal compiler would be invoked and the file
Shell.Pas™Text™ compiled. Next, the FLM compiler would bz invoked
and the file FormsInit.Flm~Text™ compiled. Finally, the linker
would be invoked and all the indicated moduies would be linked
together.

You can enter comments into a command file by placing each comment
on its own line and making the first character a semicolan (})
character. The semicoleon tells the Do program that the line is not
pxecutable. This capability is handy for “commenting out" selected
parts of the command file. For instance, if the {file
FormsInit.Fim“Text™ had not been changed since the last time it was
compiled, you could skip that command by inserting a semicolon in
front ¢f it. The command file would then look like this™

Pascal! "w0l'MyPrograms'Shell.Pas™Text™

tPLH 'w0'MyProgram ' FormsInit,Pla™Text™

LINE ‘w0'MyPreograms“Shell.Pas™Bbj"™,

*wh'MyPrograms FormsInit.Plm~0bj™, 'w0'Libs DataForms.Pas™0bkj"™,
'wO'Libs'largeException,Asa™0bj™,

'w0'Libs'LargeSystemsCalls™Lib™ TD ‘w0 'MyPrograms’Shell™Run™

BIND PURGE FASTLOAD PC(PURGE) MAP ss{stack{+1504)) @

As the Do program reads each command (or comment) from the file, it
displays the command on the screen. VYou can suppress the display of
commands by entering the command $NOLIST in the command file on its
own line. You can subseguently enable display of coamands and
comments by entering the command $LIST in the command file.

EXECUTING COMMAND FILES FROM THE USER INTERFACE

Command files can be executed directly from the File form of the
user interface. This approach is also faster since you simply fill
in the File form and confirm -- you don't have to type in a text
string to initiate the command file., For example, to execute the
cammand file described earlier ('w0'MyPrograms’ Compilelink™Com™)
fram the user interface, just fill out the File form as shown in
Figure A-2.

A-4 Program Development Guide

= .
| 21-Hae-813 5119 pi

Davice Hard Disk

Subject MuPrograms

Title [Tomp1 LeL ink |
Kind o

Fassword

Selecl g Flle and confivm o

Prress CODE=7 for help

Figure A-2. Executing a Command File from the File Form

You can also execute the command file from within an application
such as GRiDWrite using the Transfer form as shown in Figure A-3.

bDeuice Mz-d Disk

Subject HaProorams

Title Comea TeCink |
Kind Lo

Pazsword
Hext action Get new file and its application

Exchange: Fill in form and confitrm

Figure A-3Z., Executing a Command File from the Transfer Fornm

Note that the next-to-last item on the Transfer form is "Neuxt
action" ano the initial choice is "Bet new file and its

Alternate Development Approarches

f-3

application"., In this case, the file being retrieved is the
specified command file and “its application® is the program Do“Run (::)
Eommand™.

When you want to edit a command file using GRiDWrite, you cannot
directly retrieve the file with the File form since this would
automatically retrieve the Do program with the file instead of
GRiDWrite. Instead, you must already be in GRiDWrite and then must
choose "Get new file only" for the "Next action" item on the
Transfer menu., Figure A-4 shows the screen when issuing the
Transfer command from GRiDWrite to retrieve a coammand file.

Get new file and its application
Getimew file onlu.

Davice Hard Disk

Sub ject MaPrograms :
Titie Compilelink
Kird Com

Fazsword

Hext action jLet new tile onig]

CExchange Fill in form .and confirm

Figure R-4, Retrieving a Command File from the GRiDWrite FTransfer
Form

A-6 Program [evelopmznt Guide

APPENDIX B. PROGRAM OVERLAYS

Overlays let you design programs that use the minimum amount of RAM
(Random Access Memory) and thus make the maximum amount of RAM space
available for data, This is accomplished by having only a part of a
program (the "root" module) present in memory at all times. You
bring other parts of the the program (the overlays) into memory only
when they are needed to perform a particular activity. When an
overlay is not being used, it is stored on a mass storage device
(bubbie memory, hard disk, or floppy disk). When an overlay is no
longer needed in memory, it can be unloaded froa memory and another
overlay brought into the same, or overlapping memory space.

The penalties paid for this more efficient use of meaory are reduced
speed (when an overlay module is needed, it aust be read into memory
from the storage device) and slightly more complicated debugging and
linking procedures. If your application demands a greater amount of
memory for data and can tolerate the performance reductions inherent
with overlays, you can utilize the overlay capabilities provided by
GRiD 05 and implemented using the Linker program. The purpose of
this appendix is to clarify the additional factors introduced into
program structure and linking operations by the use of overlays.

THE OBOVERLAY PROCEDURE

This BRiD-0S call loads a specified overlay program module into
memory. Only one level of aoverlays is allowed (a program that has
been trought into memory as an overlay cannot them issue an
OsOverlay czll). This routine can be called only from the root
{non-overlaid} module which must be present in memory at all times.
The format for the call is:

PROCEDURE OsDverlay (VAR name : ShortString;

Overlays B-1

pid : Word;

VAR error : Word};

Parameters

name -- a ShortString record containing the name of the
overlay, The averlay name 15 defined using the linker
overlay control {See chapter 4 for dstails).

pid -- the process 1D of the overlay. Usually, this will be
the samg as the pid returned by OskhoAml; that is, the
overlay is part of the same praocess that is issuing the
Os0Overlay call,

error -- the number of any error encountered while calling the
overtlay.

This procedure call 1s straightforward and does not add much to the
complesity of & program., The enly consideration you must remember
15 that you can use this call only from the root module.

WARNING: When an overlay module is lpaded into memory, the previous
overlsy’'s cofe and data segments are overwritten., Therefore, vou
cannot heve any static variables in the data segment of an overlay:
they must be in the root module,

PASCAL OVERLAY EXAMPLE

Three Pascal program modules (SampleRoot, SampleOverlayl, and @
SampleOverlay2) are shown below. During execution of SampleRcot,

each of the overlays 13 loaded into memory {using the OsOverlay

call) and then the procedures DoSampleOverlay! and DoSamplelverlay?2

in the overlays are executed,

MODULE SampleRoot;

FINCLUDE ('w Incs'Common, Inc™Text™)

$INCLUDE {("w'Incs'OsPasTypes.Inc™Text™)
$INCLUDE (*w'Incs OsPasProcs.Inc™Text™)
$INCLUDE ("w Incs'StringTypes.Inc™Text®)
$INCLUDE ("w'Incs'StringProcs.Inc™Text™)

PUBLIC SampleOverlayl;
PROCEDURE DoSamplellverlayl;

PUBLIC SampleOverlayZ?;
PROCEDURE DoSamplelverlayl;

PROGRAM SampleRoot (INPUT, OQUTFUT);

VAR error : WORD;
ovll, ovl2 : stringptr;

E-2 Program Development Guide

O

@®

FUMCTION LoadMyOverlay (ovl: StringPtr) : BOJLEAN:
BEGIN
ovl“.dumny := ovl™.len;
OsOverlay (ov!“*.dummy, ODSWhoAml, error);
LoadMyOverlay := (error = pkCode);
END;

BEGIN
WRITELN('T am the raot');
ovll := NewStringlLit ('SampleOverlay’);
If LoadMyOverlay (ovl1} THEN DpSampleOverlayl;
ovl? 1= MNewStringlLit (’'SampleDveriay’);
IF LoadMyOverlay (ov12) THEN DoSampleQverlav?;
OsExiti{error);

END.

##%+# This is SampleOverlayl -- A Separate Module #*¥xxs¥xzss
MODULE SampleOverlayl;

FUBLIC SampleDbverlayl;
PROCEDURE DoSamplelverlayl;

PRIVATE SampleOverlayl;

FROCEDURE DoSamplelveriayl;

REGIN
WRITELN('I am overlay 1'};
END;
###% This is Samplelverlay2 -- A Separate Module ##ssssxsiess

MODULE SampleOverlay2;

PUBLIC Samplelverlay2;
PROCEDURE DoSamplelverlay2;

PRIVATE SampleOverlay2;

PROCEDURE DoSamplelverlay2;
BEGIN

WRITELN{'I am overlay 2');
END;

Overlays

E-

LINKING OVERLAYS O

When you use overlays, you must individually link the root module
and each of the overlay modules and then link all of them together
to resolve the symbols between the rppt and overlays.

For example, the following sequence from a GRiDDevelop data file
first links the module SampleRoot.Pas™Dbj™ with several libraries
needed by the program, next links two overlay module files
(SampleOverlayl.Pas™0bi* and Samplelverlay2.Pas™0bj™), and finally
links the root module with the two overlay madules.

tlink; LINK SasmpleRoot.Pas™0bj*, ‘w'Libs'pBérn0*1ib*,
‘w'Libs'pBérni™lid*, 'w'Libs'pB&rn2*lib®, 'w'Libs'pBarn3*lib*,
‘w'Lihs B0B7*Lib", 'w'lLibs LargeSysteaCalls*Lib®,
“w'libs'Dglarge*Lnk™ 70 SaapleRoot™Lnk™ DVERLAY(ROOT) NOPRINT

LINK SampleDverlayl,Pas™0bj*, 'w'lLibs'pB&rn0~lib®,

‘w'Libs p8éral™iib™, 'w'Libs pBtrn2*lib", ‘w'Libs’pB&rn3*lib",
‘w'Libs'80B7*Lib™ T0 SaspleDverlayi*Lak™ OVERLAY(5amplelverlayl)
ASSUNEROOT (SamspleRoot*Lak™) NOPRINT

LINK Samplelverlay2,.Pas*0bj*, "w'Libs pBérn0*lib*,

‘w'libs pBhrni*1ik™, 'w'Libs'pBérn2*1id*, ‘w'Libs'p8érnd*lib™, <::j:)
"Ww'libs'BOB7*Li' * T0 SasplelverlayZ*Lnk™ OVERLAY{Samplelveriay2)

ASSUKEROGT {SaepleRoot*Lnk*) NOPRINT

LENK SaspleRoot*Lnk*, Saaplelverlayl*Lnk®, Saspielverlay2*Lnk™ TD
EaapleRoot *Run™ DIND S5(STACK(+15001) PC(PUREE)

The key statements in the link commands in this example are as
follows:

* When linking the root module, you must specify that the resultant
output file be designated with the control OVERLAY(RODT). This
tells the linker program that this module is a root module,

The output files for the two overlay modules must be specified
with the controls OVERLAY(overlayNaae) and ASSUMEROOT {rootName)
to tell the linker program both the name of each averlay and name
of the root module to which each will be linked.

The last link invocation in the command file, first must name the
root module and then the overlay modules, and finally name the
executable output file consisting of the three modules
(SampleRoot, Overlay! and Overlay2) bound and linked together.
Hote: the BIND, PURBE, FASTLOAD and StackSegment (SS) controls
should only b2 used in this lack link statement,

O

B-4 Program Development Buide

(::) ADDITIONAL DVERLAY CONSIDERATIONS

To obtain most efficiant performance with overlays, your root
program should keep track of which overlay is currently 1n
memory. If you do not do this, an overlay that is aiready in
memory might be called and reedlessly relpaded.

The ASSUMERDOT control, can reduce the amount of time needed tao
link and ctan also produce smaller resultant output files.

When you‘re debugging a program with overlays, you can set
breakpoeints in the overlays but the breakpoints must be set only
after the overlay is loaded and the breakpoints must be cleared
before the overlay is removed.

FORTRAN OVERLAY EXAMPLE

This section shows a FORTRAN program that uses OsOverlay to call
two overlay subroutines.

#%#%% This is the Root Mpdule s#¥sxxsxsss
Program Bench

(::) Integer#2 ivar , ner
Integer*2 OSWHOAMI
Integer®! INAME (&)

DATA INAMEL /4,83,85,66,49,32/
DATA INAME2 /4,83,85,66,50,32/

ivar - oswhoami {)

call osoverlay(INAME!,%VAL{ivar),ner)
if(ner ,eq. O} call subl

call osoverlay(INAME2,%VAL (ivar),ner)
if{ner .2q. 0} call sub2

570°P

END

4% This is the OverLayl Module -- A Separate Module ¥¥¥#¥ixesxs

subroutine sub!

character#! big(10000)

big(l}) = ‘a-’

big(100Gd) = "z

write(6,1,I08TAT=108,ERR=100) big({} , big({10000)
format (' big start and stop subl’,al,2x,al)
return

(;#} WRITE(4,105}) 108

Qverlays B-5

FORMAT('[/0 STATUS = ', 1&}

RETURN

end

s#%% This is the Overlay2 Module -- A Ceparate Module ®¥¥ksiries

subroutine sub?

character#! big (10000}

Big{l) = "a’

bigtlooon) = "z

write(6,!,I0STAT=I05,ERR=100) big(l) , big(10000Q)
format (' big start and stop subZ’,al,2x,al)

return

WRITE(6,108) 105

FORMAT(I/D STATUS = ',Is}
RETURN

end

The following sequence from a GRiDDavelop data file first linls
the madule Benach.ftn“Ob3™ with several libreries needed by the
program, next links two overlay module files (Subl.ftn™0bji™ and
Sub2.ftn“0bj™), and finally links the root meodule with the two
cverlay modules.

The link commands for these FORTRAM overlay meodules would be as
follows:

Link Bench.finobj™, “w'Libs FBARNO*LIB*, 'w'Libs'FBORNILIE*,
"w'libs FARN2™LIB%, 'w'Libs'FBARNI*LIB*, 'w'Libs FBAGRN4MLIE®,
“w'libs'CELA7*LIR™, 'w'Libs'EHB7*LIB™, 'w'Libs 8087LIBY,
"w'Libs'DCONE7*LIB*, 'w'Libs'LargeSystemlalls™Lib™,
‘w'Libs'Dglarge®Lnk™ TO Bench™Lnk™ BYERLAY(RODT} NOPRINT

Link Subl.ftna%obj™, 'w'Libs'FBGRNO*LIB™, 'w'Libs FB&RKI“LIE*,
“w'libs FOSRN2YLIB™, "w'Libs FBARNI*LIBY, “w'Libs'FBARN4*LIB®,
“w'Libs CELA7*LIB*, 'w'Libs EMB7*LIB™, 'w'Libs 8087°LID",
‘w'libs'DCOMBT*LIB*, ‘w'Libs'Dglarge™Lnk* 70 Subl*Lnk*
OVERLAY (Subl} ASSUNERODT{BenchLnk*) NOPRINT

Link Sub2.ftn>obj*, 'w'Libs FBARNO*LIB*, ‘w'Libs FB&RNI*LIB™,
"w'Libs FBARN2*LIBY, 'w'Libs FB&RNI*LIB™, 'w'Libs FBERNAMLIR™,
“w'Libs'CELB7T*LIB*, "w’Libs'ENB7*LIB™, "w'Libs'BOB7LIB®,
w'Libs DCONB7™LIBY, ‘w'Libs'Dqlarge™Lnk™ TO Sub2*Lnk*
OVERLAY (Sub2) ASSUMERODT {Bench*Lak™) KOPRINT

LINK Bench“ink™, Subl“Lpk*, Sub2*Lnk* TO Bench*Run* BIND
GS(STACK (+1500)} PC{PURBE}

B-& Frogram Development Guide

O

APPENDIX C. SYSTEM FILES AND UTILITIES

This appendix describes the system files that the GRiD Compass uses and the
utility programs availabie to assist you during program development and system
housekeeping. NOTE: Most of the tasks performed by the utility proaranms
described here can be handled more easily by GRiDManager. Unless you have a
real need to use the command line interpreter or a need for a specific
utility, you should use GRiDManager.

(i) The system utility programs cperate on devices and files and are invoked via
o the command line interpreter. You can run any of them without regard to the
current subject since they are under the Programs subject.

SYNTAX NOTATION

Syntax notation in this appendix operates under the following
conventions.

*+ Keywords {command or function names) are in capital letters,
Exampies: CAT, DUMP.

Parameters are in lowercase letters,
Example: PREFIX pathranme.

% Square brackets enclose optional parameters.
Example: CAT [(pathnamel.

Braces or curley braclets surround a choice of parameters
with sach parameter separated by a vertical slash.
Example: {reallintegar}.

I+ a paramater choice is an option, you would surround the

choice with square brackets.
Example: {{reallinteger}].

Systenm Files and Utilities -1

A note on syntax statements: you must enter parameters in the order
given in the syntax statement.

ENTERING COMMANDS

WILDCARDS

Throughout this appendix we use uppercase letters in writing about
commands, As stated above, in the case of syntax notation, command
names are in all uppercase. When discussing a command in a
sentence, the first letter will be capitalized. For example, "Only
the Cat command recognizes the wildcard character.”

However, you can enter commands, program names, and file pathnames
in any foras you want wih regard to capitalization., The system
understands “CAT," "cat," and even "cAt" as the same command,

Some of the utilities recognize one wildcard character -- the
asterisk (#). You can substitute one wildcard for any character, for
any string of characters, or for no character(s}). Wildcards work
only with the Cat program,

For example, let’'s say you have five titles under 'w'Morebees --
Brains, Brass, Barrooms, Beanbag, and Edna. Typing a command and
following it with 'w'Morebees'B#S would cause the command to act on
all the file names that begin with B and end with 5: Brains, Brass,
and Barrooms. Beanbag fails because it doesn’t end with §, and Edna
neither begins with B, nor ends with S. B# would cause the command
to execute on all files except Edna.

A pathname consisting of an asterisk only will act on all files that
exist under the current prefix.

THE @BYSTEMERRORS FILE

The file named 8SysteamErrors™text™ in the Programs subject contains
the text that is displayed when a system error is encountered. If
this file is not present, an error number will still be displayed
when errors are encountered, but there will be no explanatory
message with the number.

THE ACTIVATE PROGRAM

This program activates a new device and adds it tp the list of
currently active devices, ’'Activating’ a device consists of
associating & device name that you specify with the appropriate
device driver program and GFIB address. The pperating systenm
antomatically activates the following devices whenever the system is
booted:

£-2 Program Development Guide

@

P

Wi

device name GPIE addr {(hex!

Floppy Disk 0003
Bubble Mamory none
Hard Disl 0004

Portable Floppy 0006
Extrs Hard Disk o0ocC
Cuitra Floppy Disk 000D

apib none
bt (bit bucket) none
ci (console in} none

co {cansole out) none

I+ a device is not physically present, it is npt activated.
Hoswever, you can later activate a device using the "Add a device”
command from BRiDManager. The currently active devices will be
displayzd on the File form.

The driver programs for local mass storage devices are incorporated
into the operating system and do not exist as separate files. The
Modem file is under the Programs subject and its kind is “Device™.
The Modem can be activated simply by selecting the file Title Modem
from the File form or by typing the command

Activate Modem
Similarly, you can activate the serial driver by typing

Activate Serial

I+ you need to activate a device whose driver prograas does not exist
as a separate program, the syntax you must use with Activate is the
more complicated form shown below:

ACTIVATE DEVICE devicel! AS device? [m] [gpib-addr]
This will look for device! in the active device table and will use
that device driver to create another device called device?. For
example, if you were connecting a second hard disk tao your systenm,
you could activate that device as follows:

ACTIVATE DEVICE ‘Hard Disk' AS 'Second Disk’ m &

This would activate the second hard disk and assign it the device
name Second Disk with a GPIP address of 4.

System Files and Utilities C~3

THE CAT (CATALOG) PROGRAM

£-4

The program lists all the titles in the subject directory, relative
to the file level you have specified. You can cause the program to
print the requested directory to some device other than the scrzen
{including a text file) by specifying a second pathname. Here 1s
the coaplete syntau:

LAT [pathnamell [pathname2l ['] [7]
Typing the Cat program name without parameters will cause the
program to display all the titles under the current subject in a
tabular form =scmewhat iike the one below {(2ll numbers are in

decimall:

Files matching ‘w'mystuff’'s

File Name Length Last Modified
Gridstar.!™Worksheet™ 107 03/146/82 09:45
Statusform™text™ 243 02/28/82 15:12
Forscast, {*Text™ 14468 03/03/82 11:47

storage utilization: 14661/10404 pages, 15.94

The first line teils the device ('w), subject (‘mystuff), and title
description (% -- the wildcard) for the titles on the screen. The
first column displays these titles. @

The second eolumn displays the number of bytes that each file
occuplies.

[
The first number after "storage utilization" indicates the fotal
number of pages taken by all files on the bubble, diskette or disk.

The second number shows the total number of pages on the bubble,
diskette or disk. To find the number of free pages available,
subtract the first number from the second.

The third number is the percentage of occupied pages to the total
number of pages available on the device.

When the file names are being displayed on the screen, you can stop
scrolling by typing CTRL-S. To restart scrolling, press CTRL-S
again. Pressing CODE-ESC cancels the Cat program and thus the
scrolling,

Note that when you enter Cat without a pathname, the Cat progranm
puts in an invisible wildcard character that defaults to the current
device/subject prefix and all the titles within that subject. For
example, if your current prefix were 'w' Breakfast, the first line of
your catalog display would read:

Files matching 'w'Breakfast'#

Program Development Guide

However, if sou wanted to lock at a dificrent pref: grouping, lila
"#'Lunch, you would have to onter this esplicitly or change vour
prefi: firzt., To see 2al! the t:itles under thic prefiz, you would
tvpe:

Cat 'f Lunch ¢

Creating a Catalog File

The Cat program lets you specify a second pathname if vou want to
send your cataleg information to a text file incstead of to the
screen. MWe call thiz file a "catalog file.* This filz can be sent
to either dishk or tc an output device, such as a prirter. The
program prepares the file during execution,

Mete that the syntax for a catalog file recquires that you pracede
the name of the catalog file with a pathname for the titles{s! you
want cataloged. At a @inimum, this pathname must be the asterisk

1
xl,

For example, typing Cat # Catchall would create a file called
Catchall and write into it all titles under tha default prefix.
Similarlv Cat BB#.COM BEBEFILE would create a file under the default
prefix called BEBEFILE and put in it all titles beginning with the
letters BR and ending with .COM,

By preceding the name of the catalog file with a device name, you
can direct where the system will send the catalog file. Without the
device name, the system will szet up tha fila &n the defauvlt desice,

! (Exclamation Point)
FPlacing the exclamation point after Cat {or after Cat and anvy of its
parameters) will cause the C:t program to dispglay file titles

withiout file l2ngths and dates and tiaes, A3 a result, the
erclamation point causes the catalog to display much more rapidly.

? Question Mark
Flacing the question mark after Cat and 2 title will cause tha Cat

program to search for that title under every subject on the
turrently preired device,

Eystem Files and Utilities -5

THE COMPARE PROGRAM

This program compares two files for equality or inequality and is
useful for checking if twec files are duplicates. The syntax is
siaply:

COMPARE filel file2

I{ the two files are identical, the program displays the word
"Same", 1f they are not identical, the word "Different” is
dieplayed,

THE DEACTIVATE PROGRAM

This program will deactivate a device, removing it from the active
device table. Refer to the Activate program for a discussion of
devices and device activation. The syntax for this program is
simply:

DEACTIVATE dev

where "dev" is the device name as listed in the active device table
{see the LADT program}.

NOTE: You should not usually deactivate any of the devices that are
automaticaily activated by the system during power up (Floppy Disk,
Hard Disk, Bupble Memory, etc.), The drivers for these devices are
incorporated into the operating system software and do not exist as
separate files., They therefore can not be reactivated using the

Activate program described earlier in this chapter.

THE DEVELOPMENT EXECUTIVE PROGRAM

The DevelopmentExecutive Run™ file under the Programs subject is the
program that provides the command line interpreter. Refer to
Appendis A for a discussion of the DevelopmentExecutive interface.

THE DO PROGRAM

C- ¢

Do“Run Com™ is the program that lets you execute a command file.

The Do program reads the commands from the file and presents them to
the system as though you were typing them in at the command line of
thez development interface. Thus, command files save you time and
etfort by letting you create ‘canned’, reusable command sequences.
MFer a discussian of command files and the Do program, refer to
Appendiyx A,

Fregram Cevelocpnent Cuids

O

o

THE DUMP PROGRAM

The Dump pragram send the contents of a file in both HEX and ASCII
to a specified destination file. If no destination file 1s
spacified, the contents are dumped to the screen. The syntax for
this program is:

DUKF sourcefile [destFilel

The information that follows is an example of a dump of the
Systea,Init™Com™ file:

FILE = system.init“Com™

0000 24 6E &F 6C &% 73 74 0D OA 61 62 74 69 7h 61 74
*frnolist,.activats

6010 65 20 6D 6F 64 65 6D 0D 0A 21 20 60 77 30 &0 70 g
modem,.' ‘w'p#

0020 72 6F 67 72 b1 6D 73 60 73 63 72 65 65 &E 77 &1
trograms SCresgnwad

0030 74 &7 6B T7E 72 75 L JE OD 0A 0D 04

*teh™run™. ... *

END OF FILE

The four-digit numbers at the left of each row are the byte count
{in heaxadecimal) of the first character in that row. Thus the
first character in the second row (hex 65) is byte number 0010
{hexadecimal) in the file. Next, the herxadecimal representation of
each bytz in the file is provided, with 16 bytes displayed in each
row. 7o the right, the ASCII representation of each byte is
dispiayed,

THE ELAPSED TIME PROBRAM

This program times the execution of any program you specify. The
syntay is:

ELAPSEDTIME pathName

where pathName specifies some executable file. After the specified
program has cempleted execution, control is returned to the
[evelopment interface and the time that elapsed since you invoked
the program is displayed.

THE EXECUTIVE FILE

This #ile is loaded i1nto memorv whenzver the system is booted., It
f1splays the initial! File form and iz required in order to perform
such as activities as exchanging filas.

System Files and Utilities C-7

THE LOAD PROGRAM S
The Load program simply lpads an executable madule into memory.

LOAD pathkame

THE MODEM DEVICE FILE

The file undar the Programs subject named Medem™Device™ contains the
device driver for the Compass Computer internal medem. Usually, the
systes autsmatizally activates the modem as part of its
initializztion sequence. VYou can directly enable or disable the
modem using the Activate or Deactivate programs.

THE PREFIX PROGRAM

When vou boot the system, the defanlt subjzct 1z alwavs Frograms
and the cevice will be whichever device ycu directed the system f0
-- bubble, hard disk, or flappy. (If you did not explictly specity
a device -- by holding down the 'H" ar 'f’ key during the boot
sequence -- the svstem first ¢tries the bubble, then the hard disk
and finslly the floppy, until it finds one of those devices ready.!

When speaking in terms of pathnames, we refer to the initial @
‘device subject pair as the "default prefix.” By "defavlt," we mean

that any time the system must access a file, it will trv to tind the

file in quasticn under the defezult grefinx, unless told to leocok

elsewhere. By "prefix“, we mean the device-subject pair.

You can overridz the default prefix by explicitly tvping another
prefiv bafeore a title. To reset the prefiy to a different device
pair altogsther, uze the Prefis program.

To erecute the program, tyoe Prefix, a space, and the nam2 of the
new ¢zfault prefix (both the phvsical device and 2 subiect, i.e.,
“frlunzhl., Finallv, press RETURN, MNete thzt s tick should not
$ollow the subject name. Tha default will remain with the new peair,
ur*il you give the system a different pair by reinvebing the Fredfix
program. Tke syntax is simple: .

PREFIX (['device lsubject

For erample, Prefix "f Programs will cause any further storage
access to lock to the floppy drive, under the subjezct "Frograas,”
Typing Prefix ‘w'Breakfast will change the default so that
subsequent searches for titlas (whether to read from them or write
to them! to the subject called Breakfast.

O

C-8 Program Dzvalopment Guide

Notz that the device is optional when specifying a new prefiu., If
you da naot include a device rame, the new prefis will become *he
specified subject combined w#ith the previously prefired devica.
Thus, :f the current prefi: 13 'w'Breakfast, typing Prefix Lunch
will cthange the default prefiz to “w'Lunch.

THE SOFTKEYS FILES

The numeric teys orn the keybeard have been proorammed to generate
often used words and symbels at the the command line level, that is,
from the development interface., For esample, typing CODE-SHIFT-4
will print the word “Pascal" on the screen., Likewise, pressing
CODE~-3 will cause "Programs'" to appear.

Thus, these ieys let you guickly generate frequently used command
messages. Thkz following table shows all preprogrammed softkey
messages and the key combinations for generating them,

¥EY CODE CODE-SHIFT
1 “'Flappy Disk"’

& ‘*Hard Disk"’

59 Programs'

8 ' ‘Bubble Memory'' Pascal

3 *"Portable Floppy'' PLH

& GRiDWrite Fortran

7 “Text"™

B *Lst™ ‘Printer

K *Cam™ “Worksheet™
0 *Run™ *Graph®™

= Prefix

Table C-1. Preprogrammed Softkeys

Programming the Softkeys

You can substitute your own message(s) for any current softkey
messages. To do this, edit the file 'w'Programs’ SoftKeys“Text™,
This file contains each message (beginning with "'f'" and ending
with "Cat") separated by a carriage return. Select a message for
replacement and erasze it. Then type your substitute message in its
place. Save the revised file,

To activate your new messagef(s), you must load the revised file.

You have two ways of doing this: sither type CODE-= or reboot the
system by pressing the reset button.

System Files and Utilities C-%

Your new message will appear whenever you press the key combination
that draws its characters from the position in which you placed your
message. For example, if you replaced "Fortran® with a favorite
subject name, "MyStuff,” vyou would see "MyStuff” every time you
pressed CODE-SHIFT-é&,

Multiple Softkey Files

You can place different 'SoftKeys*Text™ files under different
subjects. Each file can have entirely different messages. In such
a case, the file's messages will be available only when you're in
that file's subject, Whenever a subject does not have its awn
SoftKeys file, it will draw messages from the SoftKeys file in the
subject "Frograms."

To activate the Softkeys file in a subject other than "Programs,”
type CODE~=. If you don't issue this command, any use of the the
softkeys will default to Programs’'s Softkeys file.

THE STATUS PROGRAM

This program displays system status information including memory
utilization, the current prefix, and currently loaded packages. To
run the program, simply type S5TATUS and press RETURN. The
itnformation displayed will be similar to that shown below:

Lersion 3.8.8 of CCOS

Devel opmernt Executive for CCOS = 3G .4 19
=pz=tatus

current prefix: “Hard Disk“Programs

total free bygtes: 23936

roamber of free blocks: 13
largest free block: 55535

total allocated butes: 182623
riamber of allocated bilocks: 185
largest allocsted block: &5535%
=r,

C-10 Program Development Guide

O

THE SUMMARIZE PROGRAM

This program analyzes a file's usage of memory and displays the
results of thst analysis. The syntar is:

SUNMMARIZE sourcePathName [destPathNamel ['commentString ')

The sourcePathName specifies the file that is to be summarized. The
results of the summary will always be displayed on the screen. The
optional destPatkName lets you specify that the results also be sent
ta another dastination -- typically the printer. The optional
tommentString must be enclosed in single quotation marks and will be
displayed at the beginning of the summary information. For gxanmple:

SUMMARIZE ‘w'programs‘MyApp™run™ ‘printer °10-30-83 Summary’

This would cause the following information to be displayed on the
screen and also printed at the printer:

10-20~82 Summary

File: ‘w'programs’MyApp~run®
Initialization: 17 272
Code/Const: 94 9479 (B92Z7)
Fiwup: 43 680

Waste: 0 0

Total: 134 10431
Overhead: 16.0%

Data segment: 952

Stack segment: 1026

The left column of numbers shows how many records are devoted to

each category and the right column is the number of bytes in each
category,

THE TIME PROGRAM

This program simply displays the current time and date maintained by
the clock chip. To display time, simply type TIME and press RETURN.

System Files and Utilities C-11

THE UNLDAD PROGRAM ak

This program simply unloads a run module that was previously LOADed
(either explicity with the LOAD program, or by the system at boot
time!. The syntax for the Unload program is:

UNLDAD pathName

THE WORK PROGRAM

This program siaply specifies the device that will be the ‘work’
device, The language compilers and the Link program require
temporary work files for their operation, Additionally, systenm
programmers use work files for applications that require temporary
files. MWork files are discarded upon completion of the operatiaon
for which they were being used., These files assume the presence of
a virtual device named Work, The system automatically designates
the physical device that you boot from as the Work device. If you
want to change this default, run the Work program using the
following syntax:

WORK “dev
1f you boot your system from EBubble Memory, you might get a device

$ull message whan compiling programs. You should change the work
device to Hard Disk if ypu boot from Bubble Memory.

C-12 Program Development GBuide

o

APPENDIX D, LINK ERROR MEGSABES

This appendix describes error messages that may be produced by the
Link program. Only those errors deemed likely to occur in the
system are listed. Should you encounter an error message generated
by one of the Link program that is not listed here, contact the BRiD
Customer Support Center.

Remember, it is possible to receive an error message generated by
the operating system (GRiD-0S) while you are running the Link
program. Refer to the ERiD-05 Reference manual for a complete
Yisting of system error messages.

The Link program generates both error messages and warning messages,
They are listed in the pages that follow in numerical order with
warning and error messages intermixed.

Error messages are always fatal: they terminate processing of the
input file(s) and halt execution of the Link program. All open
files are clased and the contents of the print file and the object
file are undefined.

Warning messages are not fatal. They are listed consecutively as

warning situations are encoutered. Read the discussion of the
warning carefully to determine whether the resultant code is valid.

ERROR 1: I1/0 ERROR

What happened The operating system detected an I1/0 error in the
input file.

What to do Check the pathnames specified for the input file and
check for possible media errors.

Link Error Messages B-1

ERROR 2t I/0 ERROR C::D

What happened The operating system detected an I/0 error in the
print file.

What to do Check the pathnames specified for the print file and
check for possible media errors,

ERROR 31 I/0 ERROR

What happened The operating system detected an [/0 error in the
ohiect file.

What to do Check the pathnames specified for the object file and
check for possible media errors.

ERROR 4: I/0 ERRCR

What happened The operating system detected an 1/0 error in the

console file, (::)

What to do Check the pathnames specified for the console file
and check for possible media errors,

ERROR 31 INPUT PHASE ERROR

What happened A record encountered during the second phase of
linkage did not agree with information gathered
during the first phase af linkage., This error is
caused by a data transmission error or an internal
error in the Link program itself.

What to dao Contact the GRil Customer Support Center. Be
prepared to provide a copy of the object file, the
Link invocation line, and your version of the Link
program,

ERROR &: CHECK SUM ERROR

What happened The check sum field at the end of one of the object
module records indicates a transcription error. This

O

-2 Program Deviecpment Guide

O

can be caused by any number of data encoding or media

errors.

What to do Retranslate the source that produced the specified
object module where the error was detected. Then
relink,

ERROR 7: COMMAND INPUT ERROR

What happened An error was detected while attempting to read the
complete invocation line.

What to do Check the invocation line for errors and try again,

WARNING 8; SEGMENT COMBINATION ERROR

What happened Two segments with the same name can not be combined
because they have different combination attributes or
incompatible alignment attributes. The linker wil]
cantinue processing pass 1 but pass 2 will not be
started, The resultant output object file is useless
and the print file contains limited information.

What to do Retranslate the source that produced the specified
file and module. Then relink,

KARNING 91 TYPE MISMATCH

What happened There is a public/external symbol pair for which the
type definitions do not agree. The linker continues
processing using the first definition only. The
object file and the print file should be valid,
except the second definition for the symbol is
ignored,

What to do Modify the offending public or external declaration
and recompile and relink the source file.

WARNING 101 DIFFERENT VALUES FOR SYMBOLS

What happened The same symbol was declared public in two different
modules. The specified file and module contains the
second definition encountered. The linker continues
processing using the value of the first publie

Link Error Messages b-3

D-4

What to do

definition; the second definition ts ignored. Both
the print file and the object file will be valid, @

This si1tuation will often occur in the normal course
of events, for example, when you are linking library
files alang with CompactSystemCaiis™Lib™, In such
cases, you can usually ignore this warning. If it is
2 problem, change the name of the symbol in either
the specified file or in the file containing the
garlier definition of the symbol.

ERROR 113 INSUFFICIENT MEMORY

What happened

What to do

WARNING 12:

What happened

What to do

WARNING 13:

What happened

What to do

Eecause of an extensive use of public symbols, there
is insufficient memory for the linker to build its
internal tablez snd data structures,

If possible, unicad unneeded packages, such as
common., Otherwise, try incremental linkages, That
is, link smaller sets of files tcgether using the
NOPUBLICS control, then link the resulting composite
modules together.

UNRESOLVED SYMBOLS

External symbols were declared that could not be
resolved during this linkage., (This is quite common
when performing an incremental linkage.) The print
file is valid. The object file must be linked to
resolve the external references.

Link the object file to a file that will resolve the
external references.

IMPROPER FIXUP

An external reference makes assumptions about the
segment register that do not agree with the
assupption made for the public definition. The
linker continues processing., The object file will
not be usable, but the print file will be complete
and accurate,

Try recompiling with a different model of
segmentation, or change the source and reassemble.

Program Devleopment Guide

@

WARNING 14:

What happened

What teo do

GROUP ENLARGED

The specified group name has been defined twice in
two different mcdules and the segmerts contained in
the two definitions are different. The two groups
arz combined into one with all segments that were in
either group included 1n the resulting group.
Segments with the same segment rame, class name, and
overlay nape ae combined. The linker continues
processing and both the print file and object file
are valid,

No action should he necessary,

ERROR 15r LINK84 ERROR

What happened

What to do

A fatal, internal error has occurred within the Link
program itself.

Contact the GRiD Customer Support Center, Be
prepared to provide a copy of the object file, the
invocation line, and your version of the Link
program,

ERROR 16: STACK OVERFLOW

What happened

What top do

WARNING 17:

What happened

What tp do

Link’s run time stack used for type matching has
overflowed. This can be caused by an overly complex
type definition of one of your symbols,

Try incremental linkage {(see error 11). If the error
persists, contact the GRiD Customer Support Center,

SEGMENT OVERFLOW

The combinatien of two or more segments has resulted

in a segment that exceeds 44K. The linker conrtinues

processing during the current pass, but the print and
object files are not useable.

Reorganize your segments and reassemble.

Link Error Messages D-5§

D_

4

WARNING 18: IMPROPER START ADDRESS

What happened A start address was found in one of the overlay
modules, and none was found in the root module. This
error is often caused by misordering the input
modules in the input list. The linker ignores the
start address in the specified overlay module and
continues processing.

What to do I¥ you want the module containing the start address
to be the root, relink with that module first in the
input list.

ERROR (9: TYPE DESCRIPTION TOO LONB

What happened The type definition is too long to fit in the
linker s symbal table.

What to do Contact the BRiD Customer Support Center., Be
prepared to provide a copy of the object file, the
invocation line, and your version of the Link
program.

ERROR 22: INVALID BYNTAX. ERROR IN COMMAND TAIL NEAR #

What happened This error is usually the result of a typographical
error in the invocation line., The partial comsaand
tail up to the point where the error was detected is
printed.

What to do Check the invocation line and reinvoke the Link
program more carefully,

ERROR 23: BAD OBJECT FILE

What happened The link program has detected an inconsistency in the
fields of a record in the specified input file. This
error could be caused by the cempiler or could be due
to a media problenm.

What to do Recompile and then try relinking. 1If the problenm
persists, contact the GRiD Customer Support Center.

Proaram Devieopment Cuide

(::) WARNING 24: CANNOT FIND MODULE

What happened The specified module cannot be found in the specified
library file. The linker continues processing as if
the specified module was not in the list.

What to do I+ the module is important, you can link it into the
gutput object file later,

WARNING 25: EXTRA START ADDRESS IGNORED

What happened A start address has been encountered in more than one
module indicating that you have specified more than
one main module in the input list, The linker uses
the start address encountered earlier and ignores the
start address in the module specified here with the
warning message. Protessing continues with no other
side effects.

What to do Do nothing, if the start address in the specified
module was intended to be ignored.

ERROR 261 NOT AN OBJECT FILE

What happened The file specified with the error message is not an
object file. This error is usually caused by a
typographical error in the input list. However, some
media problems can also cause this error.

What to do Check the invocation line and try again, If you
suspect media problems, try recompiling and
relinking.

WARNING 28: POSSIBLE GVERLAP

What happened This warning is issued when the linker combines two
absolute segments. Processing continues with no side

effects,

What to do If there is an actual conflict, the loader will
detect the overlap.

)

Lin¥ Error Messages p-7

ERROR 30: LIBRARY IS NOT ALLOWED WITH PUBLICSONLY CONTROL

What happened The file specified with the error message is a
library file and libraries are not allowed in &
FPUBLICSONLY control.

What to do Remove the library file from the PUBLICSONLY argument
list and reinvoke the linker.

WARNING 32: EXTRA REGISTER INITIALIZATION RECORP IGNORED

What happened You have included two main modules in your input
list., The linker uses the first register
initialization record and ignores the second.
Processing continues with no side effects.

What to do 1 the register initialization information in the
file specified with the warning message should be
used instead of the first such record encountered,
then modify your input list. Otherwise, no action is
required.

ERROR 33: ILLEGAL USE OF OVERLAY CONTROL

What happened While processing input modules for an overlay, the
linker found an overlay definition in the file and
mpdule specified with the error message. A module
being used for an overlay cannot itself specify an
overlay.

What to do Remove the specified file from the input list and
relink.

ERROR 34: TOD MANY OVERLAYS IN INPUT FILE

What happened The file and module specified with the error message
contains more than one overlay definition,

What to do Remove the specified file from the input list or

correct the file so that it has only one overlay
definition. Then relink.

D-8 Progranm Devleopment Guide

{ i
—

ERROR 35: ©SAME OVERLAY NAME IN TWD OVERLAYS

What happened The file specified with the error message ccontains an
overiay that has the same name as an overlay already
encountered in the input list,

What to do Remove one of the duplicate names from the input list
and relink. If both overlzys are neeced, reiink one
of them specitying a different overlavy name.

ERROR 36: ILLEGAL OVERLAY CONSTRUCTION

What happenad GSome of the modules in the input list contain overlay
definitions while others do not. This is illegal:
all modules in the input list must be the same with
respect to overiays.

What to do FKemove the non-pveriay f:les and relink,

WARNING 37: DIFFERENT PUBLICS FOR EXTERNAL IN ROOT

What happened The linker has found two symbol definitions in the
overlay modules that resclve the same external symbal
definition in the root., The definition in the file
and module specified with the warning message is
ignored and processing continiues with no side
effects.

What teo do Remove the unwanted symbol definition and relink.

ERROR 41: SPECIFIED SEGMENT NOT FOUND IN INPUT MGDULE

What happened This error is usually caused by a typographical error
in the SEGSIIE control,

What to do Check the input list for accuracy and, if{ needed,

find the mcdule that contains the specified segment
and add it to the input list,

WARNING 42: DECREASING SIZE OF SEBMENT

What happened The size change specified in SEGSIZE has caused the
linker to decrease the size of the specified segment.

Link Error Messages B-9

Decreasing the size of a segment can cause sections

of code to be unaccounted for during the memory (::)
allocatior process, Processing continues with ne

zide effects.

What to do This is usually caused by leaving of the plus sign in
the SEGSIZE(STACK+nnnn)) control. Check the input
list and correct.

ERROR 43: SEGMENT BI2E OVERFLOW; OLD BIZE+CHANGE > 44K

What happened The size change specified in the
SEGSIZE(STACK(+nnnn)) control caused the segment to
become greater than 44K,

What to do Reinvoke the linker with the correct
BEGSIZE(STACK {+nnnn)) contral.

ERROR 44: SEGMENT BIZE UNDERFLOW) OLD SIZE+CHANBE < 0

What happened The size change specified in the
SEGSIZE(STACK{+Annn)) control caused the segment tao

become less than zero.

What to do Reinvoke the linker with the correct
SEGSIZE(STACK(+nnnn)) control.

WARNING 47: GROUP HAS ND CONSTITUENT SEBMENTS

What happened The group specified with the warning message has no
segments and is not placed in the output object file,
This error is often the result of a typographical
error in the invocation line. The group is left out
of the object file and processing continues.

What to do Unless there is a particular need for the specified
group, np action is necessary.

WARNING 48: ©SIIE OF GROUP EXCEEDS 44K

What happened All of the sezgments that belong to the group
specified with the warning message do not fit within
the physical segment defined for that group., This
error is usually caused by misuse of the SEGSILE (::)

D-10 Program Devieopment Guide

O

What to do

WARNING 52:

What happened

WHhat to do

control. The linker includes all segments in the
object file and continues processing the input
mcdule. The output module will be executable,
although addressing errors may occur.

Examine the invocation line and reinvoke the linker
using the SEGSIZE control! more carefully.

OFFSET FIXUP OVERFLOW

While computing an offset from a base, the linker
found that the offset was greater than 64%. This is
a result of one of the segments of the group being
outside the 44K frame of reference defined by its
group base. The linker continues processing and the
print file will be valid. The output file, however,
with regard to the out of place segment, will not be
usable,

Modify the group definitions in your source file,
retranslate and relink,

ERROR 551 ILLEBAL FIXUP

What happened

What to do

NARNING $B:

What happened

What to do

While processing a fixup record, the linker found
that the base for the reference and target are
different. This is usvally a coding error.

Check your source carefully, retranslate and relink.

NO START ADDRESS SBPECIFIED IN INPUT MODULES

The BIND control was specified, and none of the input
modules has a start address., This indicates that the
input list contains no main module, The CS and 1P
registers remain uninitialized, and their values are
dependent on your system loader. The object module
will be valid.

Reinvoke the linker with a main module.

Link Error Messages D-11

ERRQR 60: DUTPUT FILE 1S SAME AS INPUT FILE

What happened The pathname of the input file spectified with the
error message is identical to the cutput file
gpatnnane.

What to do Fix the duplicate-name situation and reinvoke the
linker.

WARNING 641 PUBLIC SYMBOLS NOT SORTED DUE TD INSUFFICIENT MEMORY

What happened The number of public symbols in the input-list
modules is too large for the linker to sort with
available memory resources. The priant file lists the
public symbols in the order in which they were
encountered in the input files. This condition has
no effect on the correctness or validity of the
sutput obiect module.

What te do Increase the amount of available RAM {for example, by
unloading unneeded packages) or decrease the number
of public symbols.

WARNING &5: ILLEGAL FIXUP: INCORRECT DECLARATION OF EXTERNAL
SYMBOL

What happened The declaration of the symbol specified with the
warning message was inconsistent with a corresponding
public symbol definition and the linker could not
resolve the reference. This condition is usually
caused by an attempt to access absolute entry points
fram pre-located code without using the PUBLICSONLY
contral explicitly. The linker internally converts
these illegal fixups to lsgal formats to identify all
pccurrences in a single execution. Thus the output
pbject module may not be correct, although it will be
a valid 80846 object module,

What to do 1{ the warning occurred because of an attempted
access of absolute entry points from pre-located
code, use the PUBLICSONLY control in conjunction with
the file that contains public definitions for those
entry points,.

D~12 Praogram Davleopment Guide

A

WARNING 691

What happened

What to do

WARNING 71:

What happened

What tp do

WARNING 721
IGNORED

What happened

What to do

WARNING 74:

What happened

What to do

OVERLAPPINE DATA RECORDS

The FASTLOAD control was specified, and two data
records belonging to the same segment have offsets
which make them overlapping. This is usually the
result of a translation error, unless you have
intentionally overlapped data records. The linker
ignores the second record and does not include it in
the output file. The code will be unusabie.

I'¥ you want an overlap condition to exist, reinvoke
the linker but do not use the FASTLOAD control.
Otherwise, retranslate, then reinvoke the linker.

TOD MANY MAIN MODULES IN INPUT

Thers are two or more main modules {modules with
start address) in the input list. The lirker uses
the start address of the first main module it reads
and igrnores the others. The object code will be
valid,

Make sure that the linker’'s interpretation is
suitable to your objectives. If not, modify the
input list and relinl,

REBISTER INITIALIZATION CODE EXISTS, NEW INITIALIZATION

Because of a translation or linker problem, two or
more initialization codes for BOB& registers were
encountered in the input list, The linker uses the
first initialization code and i1gnores the others.
The object code will be valid,

If retranslating of relinking does not correct the
error, contact the GRiD Customer Support Center.

PRINT FILE SAME AS INPUT FILE

The pathnames of the print file and one of the input
files are identical.

Fix the duplicate-name situation and reinvoke the
linker,

Link Error Messages D-13

D-114

ERROR 75: PRINT FILE SAME AS OUTPUT FILE

What happened The pathnames of the print file and the output file
are identical.

What to da Fix the duplicate-name situation and reinvoke the
linker.,

Program Devieopment Buide

() INDEX

BGB& registers, displaying in debug progras, 5-7
8087, Libraries, 3-3

87null™~Lib~, 3-2

8SyteaErrors f1le, C-2

A

absHem, debug program, 5-3
Activate program, C-2
Activating,

devices, C-2

soden, C-3

seri1al, C-3
Addresses, displaying in debug progras, 5-9
Alternate development approaches, A-}
Alternate window, in debug prograa, 5-7
Appending file kinds, 1-5
Asem title suffix in GRiDDevelop, 2-33
Asseabler, reference manual, 3-1
Assign value command, debug progras, S5-10
Assueeroot control, link progras, 4-4, B-4
Asterist (0},

debug prompt, S5-3

wildcard character, C-2

@ -

Bad object file error, link program, D-7
Bing, link control, 4-2, 4-4
Breal table entry, debug prograa, 5-5
Breakpoint, setting in debug pragram, 5-5
Breakpoints,

clearing in debug prograa, 5-4

debug program, S-1

proceeding after in debug prograa, 5-7

use in overlays, B-5

[»

Cannot find module warning, link programs, D-7
Cat (Catalog) program, C-4

Catalog file, creating, C-5

celB7%Lib"~, I-3

Change source groups fara, in GRiDDevelop, 2-14
Change source groups ites, GRiDDevelop menu, 2-13
Changing data 4iles 1n BRiDDevelop, 2-19
Changing memory contents, debug progras, S-11
Check sum prror, link progras, D-3

Clear breakpoint coamand, debug prograa, 5-&
Clock chip, C-11

CODE-? comaand,

debug program, S-4

in ERiDDevelop, 2-17
CODE-B command, debug program, 5-5
CODE-C command, debug program, S-4
CODE-D comsand,

debug progras, 5-&

in developaent executive, A-2
CODE-E command, debug prograa, 5-&
CODE-I command, debug program, $-5
CODE-L coamand, debug program, 5-4
CODE-M comsand, debug program, S5-7
CODE-D command, debug program, $-7
CODE-P command, debug prograa, 5-7
CODE-0 comsand, debug progras, 5-7
CODE-R comsand, debug program, 5-7
CODE-SHIFT-ESC, causing breakpoints with, S5-6
CODE-T command, debug programs, 5-8
COBE~-T, (Transfer) cosmand, in GRiDDevelop, 2-19
CODE-W command, debug progras, 5-B
Com file kind, 1-4
Cosmand files, 1-6, A-3

examples of, A-3, A-4

executing from File form, A-S
Coamant input error, link program, D-2
Command line commands, debug program, 5-9
Comsand lines,

in BRiDDevelop Debug tokens, 2-S

terainating, A-2

with user-deiined tokens in GRiDDevelop, 2-1¢
Compand sodifier characters, 1n BER1DLevelop, 2-17
Comsand sumsary,

debup program, 5-2
Coamands menu,

in GRibDevelop, 2-17

with user-defined tokens, 2-17
Comsands,

debug programs 5-4 - 5-9

1ssuing in utility programs, C-2
Coasents, inserting in comsand files, A-4
Cospact size control, compilers, 3-2
CnlpactSysteaCalls. 3-2
Compare program, {-b
Coapile considerations, debug programs, 5-2
Cospile fors, in BRiDDevelop, 2-5
Cospile source files form, in BR1DDevelop, 2-13,14
Compiter,

Fortran, 3-i

Pascal, 3-1

PL/N, 3-]
Compiler reference manuals, 3-1
Coapilers, invoking, 3-3

invoking from comsand files, A-4

invoking with BRiDDevelop, 1-3
Compilers,

size controls, 3-1, 2
ConPas,anc, 3-5
ConPlm.inc, 3-5

Program Development Guide Index-1

Controls token, ERiDDevelop, 2-4
Controls, size :n cospilers, 3-1, 2
Conventions, file naming, 1-7
Count, breating at in debug, 35-5
Creating catalog fite, C-5

CREF progran, 4-1

Cross reference progras, 4-1

Current location, diplaying in debug program, £-5

Cursor, for development executive, A-2

D

Data #1le for GR1DDevelop, 2-2, 2-3
changing, 2-19
deonB7~Lib~, 3-1
Deactivate prograe, C-b
Debug conmand line commands, £-9
Debug commands,
assign value, 5-10
clear breatpoint {CODE-C), 5-3
display address, 5-9
display memory contents, %
duplicate line (COPE-D¥, &
examine/change mempry, 5-1
executi1ve (CODE-E+, S-&
help (CODE-?), 5-%
1néo (CODE-1), S-&
jotation display (CODE-L), S5-4
meapry dunp, 530
sessage display (CODE-M), S-
message dasplay (CODE-M), 5-
options (CODE-O1, 5-7
proceed (CODE-PY, 5-7
quit (CODE-@Y, 5-7
register display (CODE-R), 5-7
set brealpoint (CODE-B), 5-3
tasks/semaphore display (CODE-T!, 5-8
window toggle (CODE-W). 5-B
Debug menu 1n GR1DDevelop, 2-6
Debug program, 3-!
comnand sussary, 5-2
compile considerations, 5-2
tiles, 5-7
invoking, 5-2
link considerations, 5-2
proapt symbol, 5-3
syatax, 5-3
Debug records, link pragras, 4-8
Debug tokens,
in BRiDpevelop, 2-5
using command lines with, 2-3
aultiple, 2-6
Debugger, i1nvoking froa GRi1DDevelop, 2-%
Debugging overiay programs, B-3
decimalConstant, debug prograa, 5-3

-9
-t
!

7
7

Decreasing si1ze of segment warning, link program, D-iC

Default menu, GRiDDevelop, 2-1
Default module, in debug, 5-7
Delimseter characters in file names, 1-4

Developeent approaches, alternatives, A-1
Development environment, BRiDDevelop. 1-3

-

Development Executive interface. S-é
Development Executive program, A-2. C-6
pevelopment sequence, 1-1
Device driver, aodea, (-8
Device level, i1n directories, -4
Devices,

activating, C-2

deactivating, C-&

Different publics for external error, link prograa, D-9
Different values for symbels warning, link progras, b-4

Directory, typical, 1-4

Display address coemand, debug prograe. 5-9

Display memory contents command, cebug prograa, 5-9
Display of variables, terminating 1n debug. 5-9
Display variable contents, debug prograe, 5-9
Displaying messages, in debug prograe, 5-7
D:splaying tasks/semaphores in debug, 3-8

Do prograa, L-&

using with comemsand fi1les, A-I
DPeLarge. T-3
Uump prograsm, C-7

Duaping semory contentc, debug progranm, 5-10
Duplicate line command, debug prograe, 5-&

Edit source f1ie, BRiDDevelop command, 2-2

Ed:it source file senu, GRiDDevelop, 2-3
Editor, text, See BRi1DWrite

ehB7~Lib™>, 3-2

Elapsed time proparam, C-7

Enter token, in GRiDDevelop, 2-&

Error sessages, link progras, &4-9, D-!
Error messages, systea, D-l

Errors, systes file, -2

Exclamation point ('), used in Cat progras, c-£

Executatle files, 1-&

Executive command, debug progras, S-é
Executive file, L-7

Exit from debug prograr, -7

Exit token, in BRiDDevelop, 2-7

Extra register initialization warning, link program, D-8B
Extra start address 1gnored warning, link prograa, p-7

F

§B&rn0~L1D~Y ~ fBérna~Lib>, 3-3
Fastload, link control, 4-5, 4-8
File form,
executing command f1les from, A-5
invoking applications from, 1-5
File kinds, §-5
list of, 1-6
File names,
assuaptions 1n &R1DDevelop, 1-5
conventions, 1-3
restrictions in compilers, 1-9
lanquage identification in, 1-3
listing with Cat program, C-4

‘ndes-T Program Development Buide

O

O

Files,
creating catalog, C-5
GRiDDevelop data, 2-2, 2-3
coamand, 1-6, A-3
comparing, C-4
debug progras, 5-3
duaping, C-7
executable, 1+§
GRaDWrite, 1-&
include, 3-4
library, 1-&
list, 1-é
log, 2-9
aap, J-&
obyect, 1-&
organizang, 1-3
printing lists and sources i1n GRiDDevelop, 2-20
run, 1-é
systese, (-]
text, 1-6
Foras,
Change source groups, 2-14
Cospiie cource ¢1les, in ERiDDevelop, 2-13,14
Link in GRaDDevelop, 2-8,%
Print last files, 2-21
Print source files, 2-20
Fortran
compiler reference manual, 3-}
overlay evasple, B-9S
run-tiae libraries, 3-3
Ftrn title suffix in GRiDDevelop, 2-17

GhiDDevelop Comsands esenu, 2-17

with user defined tokens, 2-14
GR1DDevelop

compile fora, 2-5

data file, 2-2, 2-3

data f1le, changing, 2-19

file nase assuaptions, -5

adin aenu, 2-]

aessage line, 2-10

predefined tokens, 2-3
6RiDDevelop tokens,

Controls, 2-4

Debug, 2-5

Enter, 2-é

Exit, 2-7

Liak, 2-7

Listings, 2-8

Log File, 2-9

Nase, 2-11

Dbrects, 2-11

Prefisx, 2-32

Print to, 2-t2

Source groupNasmes, 2-13

Sources, 2-12

Test, 2-15
GRiDManager, adding devices from, (-3

GRiDWrite,
files, 1-4
creating command files with, A-J
cresting source {files with, 1-2
executang coemand files from, A-¢
invoking froe GRiDDevelop, 2-2
invoking wmith 6RiDDevelop, 1-3
editing log f1les with, 2-9
Group enlarged warning, link prograe, D-5
6roup has no constituent sements warning. link prograe, D-[!
Group names for source files, 2-17

H

Help coamand, debug progras, 5-4
hexConstant, debug prograam, 5-3

1/0 error, lint program, D-2
LAPY BH,B8 Utilities User's Guide, 4-1
Iliega) faxup error, link program, D-11
11legal fixup: Incorrect declaration warning, link program, D-1
I1legal overlay construction error, link programs, D-9
Illegal use of overlay control error, link program, D-E
Isproper fixup warming, link prograe, D-S
Improper start address warning, link program, D-&
Include contreol statements, examples, 3-5, 3-&
Include f1les, 3-4

listing with source files, 2-13

nas:ng conventions, 1-5

organizing, i-4

Pascal, 3-5

FL/8, 1-5
Info comsand, debugp progras, 5-¢
Input phase error, lank prograe, D-2
Input/output routines,

BR:D-DS, I-2

Fascal, 3-2
Insufficient aemory error, link program, D-4
Intel compiler name restryctions, 1-5
Invalid syntax error, link program, D-é
Invocation examples, link program, 4-2
Invoking compilers, 3-3

from coamand files, A-4

with ERiDDevelop, 1-2
Invoting GRiDWrite from GRiDDevelop, 1-3, 2-2
Invoking the debug prograa, 5-2

in GRiDDevelop, 2-5
Invoking the linker program, 1-2

in 6R1DDevelop, 2-7

K

Kind, see File kinds

Program Developament Guide Index-~Z

L

Language identification in f1le nanes, 1-5
Large size control, compilers, 3-2
LargeSysteaCalls, 7-2
Lib file kind, 1-6
Librarian programs, 1-6, 4-1
Libraries, 3-2

B0B7, 3-3

CompactSysteaCalls, 3-2

Fortran, 3-3

LargeSystesCajls, 3-2

prganizing, I-4

Pascal run-tiee, 3-2
Library not aliowed error, link progras, D-B
lined, debug program, 5-3
Link considerations, debug progras, 5-2
Link controls,

Assumseroot, 4-4

Bind, 4-2, 4-%

fastload, 4-5, 4-8

Rap, 4-5

Name, 4-&

Overlay, 4-4, 4-4

Print, 4-7

Printcontrols, 4-7

Purge, 4-5, 4-8

Segment Size, 4-2, #-6

sunnary of, 4-3
Link fors in GRiDDevelop, 2-8,9
Link invocation examples, 4-2
Link map files, 1-b, 4-5, &-%
Link progras, 4-]

assuvmeroot contrel example, B-4

error aessages, #4-9

invoking, 1-2, 4-1

from coemand files, A-4
from BRi1DDevelop, 2-7

overlay contrpl exaaple, B-4

print file, 4-5, 4-7, 4-9

syntax, 4-1, 2

warning msessages, 4-%
Link statements, terminating in 6R:iDDevelop, 2-7
Link tokens,

in GkiDDevelop, 2-7

sultiple, 2-7
Link warning eessages, B-1
LinkB4 error, link progras, D-3
Linking overlays, B-3
List fi1les, 1-¢

printing, 2-2!
Listing ti1tles with the Cat program, C-4
Listings token in GRiDDevelop, 2-8
Load progras, C-8
Location display comsand, debug program, S-¢
Log Files, 2-%

adding entries to, 2-10
Lst extension, appending by compilers, 2-9
Lst file kind, 1-é

Index-4

Hain aenu, G6RiDDevelop, 2-1
Manuals, coapiler reference, 3-1
Map files, 1-&
Map, link control, 4-5, 4-9
Mdoules, executable, 1-2
Hemory
assigning values in debug prograa, 5-40
contents, examine/change in debug, 5-11
displaying contents in debug prograa, 5-9
dump comnand, debug progras, 5-10
usage, by a file, C-11
Henus,
Debug in GRiDDevelop, 2-6
GRiDDevelop commands, 2-17
6RiDDevelop default, 2-1
GRiDDevelop main, 2-2
GRiDDevelop Transéer, 2-19
6RiDDevelop Edit Source File, 2-7
Message display cosmand, debug progras, 5-7
Message line, displaying in GRiDDevelop, 2-11
Hessages,
link errors, 4-9
link warnings, 4-9
warning, D-1
Mpden,
device file, C-B
activating, C-7
spdule, debug program, 5-3
Modules,
Fortran, 3-3
linking of objects, 1-2
Pascal, 3-2
MP1, 4-5, 4-7, 4-9
MP1 {ile kind, 1-é&

Name assumptions in BRiDDevelop, 1-5
Name, link controel, 4-&
Name token in GRiDDevelop,

exanple of use, 2-11
Names, adding language identification to, 1-5
Naming conventjons,
for include files, 1-5
for source files, 1-5
Maming files, 1-4
Maming restrictions in coapilers, 1-§
No start address specified warning, link program, D-12
Not an object file error, link program, D-7

Frogram Development Guide

O

o

0b)
extension, appending by coapilers, 2-11
file kind, 1-6
Dbiect files, 1-&
size, 4-5
organizing, 1-4
Cbyect modules, linking, 1-2
Objects token, in BRiDDevelop, 2-11
Offset fixup overilow warning, link prograa, D-1]
Gptions command, debug progras, 5-7
Organizing files, 1-3
DsOverlay procedure, B-1
OsFasProcs, Inc, 3-5
OsFasTvpes, Inc, 3-5
OsPlmProcs. Inc, 3-5
OsPleTypes. Inc, 3-5
Overlapping data records warning, link prograa, D-13
Overlay control, link program, 4-4, 4-4, P-4
Overlays, B-1
additional considerations, B-4
breakpoints, P-4
debugging, B-4
linking, 8-3
Fortran exaaple of, B-§
Pascal example of, B-2

P

Pas title suffix in BRiDDevelop, 2-13
Pascal

cospiler, reference manual, 3-1

include files, 3-3

overlay exaople, B-2

run-time libraries, 3-2
PL/A

compiler, reference manual, 3-1

title suffix in GRiDDevelop, 2-13
PLMLits,1nc, 3-5
Possible overlap warning, link program, D-8
Predefined tokens in GRiDDevelop, 2-3
Prefix prograa, C-B
Prefirx token, in GRiDDevelop, 2-12
Preprograamed sofkeys, C-9
Print {ile same as input file warning, link progra
Print 4ile same as putput file error, link progras
Print file, link program, 4-%, 4-7, 4-9
Print list files form, 2-21
Print source files form, 2-20
Print to tolen, in GRiDDevelop, 2-12
Print, link control, &-7
Frintcontrols, link control, 4-7
Printing files in BRiDDevelop, 2-20
Proceed command, debug progras. 5-7
procName, debug progras, S-3
Program, Pascal declaration, 3-2
Prograseing softkeys, C-9
Frograms subject, L-1

Prompt symbol, for development executive, A-I

Public records, link progras, 4-8

Public symbels not sorted warning, link program, D-i2
Purge, link control, 4-5, 4-8

Question mari (7},
GR10Develop command sodifier, 2-17
used 1n Cat program, C-&

Quit command, debug progras, 5-7

fead, Pascal procedures, 3-2
Register display comamand, debug programs, 5-7
fegister, debug program, 5-3
Restrictions on file names in compilers, 1-3
Root file, 4-4%
Root apdules, B-1
Run 41le kind, 1-&
Run files, 1-4
Run-tjee libraries,
Fortran, 3-3

Pascal, 3-2

Same overlay name error, link program, D-9
Segeent combination warning, link program, DB-3
Segment overflow warming, link program, D-g¢
Segment size overflow error, link program, D-10
Segaent size underflow error, link program, D-10
Segment Size, link control, 4-2, 4-8
Semaphores, displaying in debug prograa, S-8
Semicolon (3),

GERiDDevelop cossand modifier, 2-!7

using irn command files, A-4
Sequence, development, 1-1
Seri1al, activating, C-2
Set breakpoint command, tebug program, 5-5
Site controls, compilers, 3-1, 2
Size of group exceeds 44K warning, link progras, D-11
Site, stack segment, 4-B
Softieys,

file, £-9

sultiple files, C-10

preprograased, C-%
Source files,

creating, 1-2

compiling, i-2

editing from GRiDDevelop, 2-2

riaming conventions, 1-5

organizing, 1-4

printing, 2-20

Program Development Guide Index-3

O

Sources groupNamse token, i1n GR:DDevelop, 2-1IT Toc sany main modules warming, link progras, D-1Z
Sources tokern, Too aany overtays error, link program, B-9

in GRiDDevelop, 2-12 Transfer menu, in GRyDDevelop, 2-1°9

interaction with Listings token, 2-9 Type description too fong error, lin¥ progras, D-¢
Specified segment not found error, line prograa, D- Type mismatch warning, link progras, D-0
§5 (see Segment Size! Typical directory, 1-4

Stacl overflow error, link progras, D-5
Stack segment, 4-£

Subject level, in directories, 1-4
Suffixes, titles in GRiDDevelop, 2-17 LS
Sumsarize program, C-11
Sumsary of cosmands, debug program, 3-2 Unload prograe, C-12
Summary of link controls, &-3 Unresolved syebpols warning, link progras. D-4
Syebols, resclving during overisy linbs, B-I User-defined tokens,
Syntasx, in GRiDDevelop, 2-1¢6
debug program, S5-0 on GRi1Dlevelop Coamands senu, 2-17
DU O G Utilities, iAPX 85,88, 4-1

System errors file, C-2 Utility programs, C-1

wildcards in, C-2
T
Tasis.'semaphore display cossand, debug progras, 5-B .
Tersinating tint statements, 1n GRiDDevelop, 2-7
Test senu, 1n 6R1DDevelop, 2-16
Test token, in GRi1DDevelop, 2-13
TestNane token, in GRiDDevelop, 2-15
Text editor, see GRilWrate
Text f1le kind, 1-6
Text f1les, 1-6
Tise program, C-11
Time, elapsed, C-7
Title fevel, in directories, 1-4
Title suffixes 1n GRiDDevelop, 2-17
Titles,
listing with Cat program, C-4
naming, 1-4
Toggling windows in debug, 5-B
Tokens 1n ER1DDeveloc.
Controls, 2-%
Debug, 2-5
Enter, 2-&
Exi1t, 2-7 z
tig:;n;sf . 127DEBUG 4iles, S-3
Log file, 2-10
Name, 2-11
Dbyects, 2-11
Prefyn, 2-12
Print te, 2-12
Source groupNames, 2-17
Sources, 2-12
Test, 2-1%
user-defi1ned, 2-1b

Variables,
assigning values in debug progras, 5-10
displaying contents of in debug, 5-9
varNase, debug program, 5-3

W

Wa-ning messages, link prograas, 4-9
Wildcards,

in ut1lity programs. (-2
Window toggle commanc, debug program, 5-8
Wirdow, alternate 1n debug progras, §-7
Wori program, C-12
Write, Pascal procedures, 3-2

Indeu-6 Program Development Guide

