Programming EPROMs for GRiDCase and Compass

October 1986

COPYRIGHT (C) GRiD Systems Corporation
2535 Garcia Avenue

P.0. Box 7535

Mountain View, CA 94039-7535
(415)-961-4800

Manual Name: Programming EPROMs for GRiDCase and Compass
Order Number: 031031-44
Issue Date: October 1986

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electromnic,
mechanical, photocopy, recording, or otherwise, without the prior written
permission of GRID Systems Corporation.

The information in this document is subject to change without notice.

Neither GRiD Systems Corporation nor this document make any expressed or
implied warranty, including, but not limited to the implied warranties of
merchantability, quality, or fitness for a particular purpose. GRiD
Systems Corporation makes no representation as to the accuracy or adequacy
of this document. GRiD Systems Corporation has no obligation to update or
. keep current the information contained in this document.

GRiD Systems Corporation’s software products are copyrighted by, and shall
remain the property of, GRiD Systems Corporation.

Under no circumstances will GRiD Systems Corporation be liable for any
loss or other damage arising out of the use of this manual.

The following are trademarks of GRiD Systems Corporation: GRiD, GRiD
Compass, GRiDCase and GRiD Server.

MS-DOS is a trademark of the Microsoft Corporation.

Contents

About This Manual , .

Who Should Use This Manual .
Prerequisites . .

How to Use This Manual . .
Conventions Used in This Manual
Other Documentation

Chapter 1: Introduction/Overview . .
Chapter 2: GRiDCase ROM Capability .
Chapter 3: Compass ROM Capability

Chapter 4: Creating MS-DOS ROMs

Commercially Available Applications . . ., . . .
Installation/Configuration e
Extraneous Files
Copy Protection .

Read/Write Access .

MS-DOS ROM Software
Select ROM Options
Select File(s) to be Included in ROH
Create ROM Hex Files e e
Configure Serial Port .

Send ROM Hex File(s) to Serial PROM Programmer

vii

vii
vii
viii
viii
viii

1-1

2-1

w
3
]

S
)) . '
-

NNNUMPOUWWR NN

rPEPEPPEREEP

Chapter 5: Creating GRiD-0OS ROMs ..

GRiD-0S ROM Software .
‘RomBuilder~Task~ .
RomBuilder~Run~
PROM~Run~ . .
Wavetek-Terminal~
Datal/O~Terminal~
Other~Terminal~

Appendix A: Handling EPROMs

Appendix B: GRiD Part Numbers for EPROMs .

.

Appendix C: PROM Programmers .

Generic serial programmers .

DATA I/0 .
Sailor-8 .
EPRO .
Appendix D: ROM Structure

ROM Header .

Identificaci;n.Fiolds .

Bootstrap Fields
Directory Fields

Glossary

.

List of Figures and Tables

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

R R
WLWNMHENMOESWND

DoouuLd e R e S

ROMBUILD Main Menu

ROMBUILD Options Menu

ROMBUILD Boot Menu

ROMBUILD File Select Menu
ROMBUILD Verify Include File
PROM Programming Process
RomBuilder Main Menu

Memory Mapping of a Single ROM
Memory Mapping of a ROM Package
ROM Header

About This Manual

The ROM (Read-Only Memory) capabilities of the GRiD Compass and GRiDCase
provide a compact and durable storage medium for portable applications. This
manual describes those capabilities, and the process by which an application
is put into ROM.

GR1D supplies some of its operating systems and applications in executable
ROMs. Software in an executable ROM saves RAM in the computer by executing
directly from the ROM rather than being drawn into, and executed from, RAM.
The process of making an executable ROM is quite difficult and only available
under GRiD-0S. Therefore, it is not described in this document. If you
desire to put your application into an executable ROM, contact your GRiD sales
representative for consulting services.

Who Should Use This Manual

This guide 1s intended for the computer literate GRiDCase or Compass user with
a desire to put an application into ROM. Software developers should consult
this guide before developing a new application for ROM. Software integrators
should also consult this guide if they want to move a pre-existing application
from diskette (or other media) into ROM.

Prerequisites

It is assumed that the reader of this manual is familiar with software
concepts on computers. A GRiDCase or Compass with 512 KB of memory and a hard
disk are required to run the software necessary to put an application into
ROM. Compass users with a serial PROM programmer may need a cable to convert
the DE-19 (19 pin) serial connection on the Compass to a DB-25 serial
connection. GRiD supplies a cable for this purpose; the model number is 6100.

How to Use This Manual

This manual is not intended to be read from cover to cover. Readers should
peruse ‘only those sections that apply to their computer, operating system and
application.

Chapter 1 provides an introduction and ovarview to ROM burning.

Chapter 2 provides an overview of GRiDCase ROM capabilities.

Chapter 3 provides an overview of Compass ROM capabilities.

Chapter 4 provides information on preparing for and creating MS-DOS ROMs. The
MS-DOS ROM software is described in detail.

Chapter 5 provides information on creating GRiD-OS ROMs. The files provided
with the GRiD-0S ROM burning software are explained in detail.

Appendix A provides helpful information on handling EPROMs.
Appendix B provides GRiD part numbers for EPROMs and related items.
Appendix C provides specific information about particular PROM Programmers.

Appendix D provides additional technical information on creating EPROMs.

Conventions Used in This Manual

In process diagrams such as Figure 5-1, rectangular boxes are used to
represent data files, and parallelograms (slanted rectangles) are used to
represent programs or run files.

Other Documentation

Additional information on creating ROMs may be obtained from the following
documents.

GRiDCase Technical Reference Manual 029500-50
GRiD-0S & MS-DOS Utilities 021210-43
GRiDTerm and GRiDReformat . 021141-43
Using MS-DOS on the GRiD Compass 021040-43
Using MS-DOS on the CRiDCase (version 2.11) 029500-44

Using MS-DOS on the GRiDCase (versiom 3.2) 029550-44

Chapter 1: Introduction/Overview

The GRiD computer line of products is intended for use in very portable
applications. The Compass and GRiDCase are compact, Iightweight computers
that carry a limited amount of internal storage. The Compass has 384 KB of
bubble memory, and the GRiDCase has a 720 KB 3-1/2" floppy drive. In many
applications this storage is adequate for data, and the application software
is stored in Read Only Memory (ROM). The ROMs take the place of a second
drive, being both lighter and more rugged than a floppy diskette. One of the
major advantages of ROMs is that end users cannot accidentally damage the
application software. It is also much easier to train end users to work with
an application in ROM (they don’'t have to worry about ingerting the
application diskette). For these reasons, GRiD has designed the ROM capability
for their machines.

ROMs are integrated circuits that contain code and data in much the same way
as regular system memory (RAM). One difference is that ROMs are read-only --
they cannot be written to while installed in a Compass or GRiDCase. The
second main difference is that ROMs are permanent storage, where RAM is
transitory (its contents are lost when the power goes off). ROMs are
lightweight and compact, as well as reasonably priced. They are intended for
use with fixed applications in the GRiD line of computers.

GRiD has put its operating systems and many of its own utilities and
applications into ROM. As with all computer systems, a GRiD system always
requires an operating system to function, so an operating system ROM is a good
example of effective use of the ROM capability. In most portable business
systems there is a fixed application (account auditing, sales reporting, data
collection, etc.). The users rarely require momentary use of different
applications. These fixed applications are a perfect fit for ROM use.

The other advantages to ROMs are that thay are durable, fast and prevent a

novice user from accidentally erasing an application, since ROMs cannot be
erased once they are installed in the computer.

1-2 Programming EPROMs for GRiDCase and Compass

In this manual the term ROM (K. -1 Only Memory) is used interchangeably to mean
EPROM (Erasable Programmable Re:d Only Memory) and/or PROM (Programmable Read
Only Memory). Where a precise definition is needed, the exact term (EPROM or
PROM) is used.

The different types of ROMs may be mixed together (PROMs and EPROMs) as well
as different sizes (32 KB, 64 KB and 128 KB), different software types
(bootable, executable and draggable), and different operating systems (MS-DOS
and GRiD-0S). All of these terms are explained in later chapters, as well as
in the glossary in the back of this manual.

Chapter 2: GRiDCase ROM Capability

The GRiDCase computer family has four 28-pin ROM sockets accessible under a
small panel located above the keyboard. These sockets are referred to as the
external ROM sockets. It also has four 28-pin ROM sockats on a ROM board
"under the hood" (inside the GRiDCase). These sockets are referred to as the
internal ROM sockets. Each of the ROM sockets (internal and external) can
have a 128 KB masked ROM, or a 64 KB (or smaller capacity) EPROM inserted into
it. (With a masked ROM, a master is prepared and sent to be duplicated in
mass quantity. Masked ROMs have 28 pins.) The four internal ROM sockets of
the GRiDCase Plus can accomodate 32-pin 128 KB EPROM's, as well as 28-pin 64
KB EPROM’s and 128 KB masked ROMs. The sizes and types of ROMs can be mixed,
and arranged in any order in the sockets.

The GRiDCase has the capability of having RAM installed up to a limit of 640

KB. Under GRiD-0S, the upper area of RAM between 512 KB and 640 KB is saved

for ROMs and RAM disks. Under MS-DOS, this upper RAM is used as part of main
memory to be compatible with the IBM PC.

ROMs in the GRiDCase may contain one of three types of code: bootable,
draggable or executable. Bootable code is invoked from the boot PROM during
initialization at system power-up or system reset. The boot PROM does not
occupy one of the ROM sockets, it is internal to the GRiDCase. The GRiD user
does not have access to the boot PROM, and would never need to create a boot
PROM. Understanding that there is a boot PROM and its function is all the
information that is needed.

Draggable code is invoked by the user selecting a file for execution from ROM.
Draggable ROMs are available under GRiD-0OS and MS-DOS. The code in a
draggable ROM is transferred from the ROM memory space to main RAM before it
is executed. You can think of draggable ROMs as another media storage device,
which is read-only. The ROMs created with the MS-DOS ROMBuild software are
draggable ROMs.

2-2 Programming EPROM’s for GRiDCase and Compass

Executable code is invoked by the user selecting a file for execution from
ROM. Executable ROMs are only available under GRiD-0$ or InteGRiD. The main
advantage to executable code in ROMs is that it does not occupy as much of
main RAM as draggable code in ROM. Instead of dragging the application into
RAM and then executing, the code executes from the ROM. Therefore, when an
application ROM is inserted into your system, you effectivaely add tha RAM the
application would normally require to the total RAM in your system.

Chapter 3: Compass ROM Capability

The GRiD Compass computer has four 28-pin ROM sockets accessable under a small
panel located above the keyboard. Each of these sockets can contain one 128
KB masked ROM, or one 64 KB (or smaller capacity) EPROM. (As of the writing of
this manual, there are no 28 pin, 128 KB EPROMs available that will work in

the Compass.) The sizes and types of ROMs can be mixed, and can be arranged
in any order in the sockets.

ROMs in the Compass may contain one of three types of code: bootable,
draggable or executable. Bootable code is invoked from the boot PROM during
initialization at system power-up or system reset. The boot PROM does not
occupy one of the external ROM sockets, it is internal to the Compass. The
GRiD user does not have access to the boot PROM, and would never need to

create a boot PROM. Understanding that there is a boot PROM and its function
is all the information that is needed.

Draggable code is invoked by the user selecting a file for execution from ROM.
Draggable ROMs are available under GRiD-0S and MS-DOS. The code in a
draggable ROM is transferred from the ROM memory space to main RAM before it
is executed. You can think of draggable ROMs as another media storage device,
which is read-only. The ROMs created with the MS-DOS ROMBuild software are
draggable ROMs.

Executable code is invoked by the user selecting a file for execution from
ROM. Executable ROMs are only available under GRiD-0S. The main advantage to
executable code in ROMs is that it does not occupy as much of main RAM as
draggable code in ROM. Instead of dragging the application into RAM and then
executing, the code executes from the ROM. Therefore, when an application ROM
is inserted into your system, you effectively add the RAM the application
would normally require to the total RAM in your system.

Chapter 4: Creating MS-DOS ROMs

The maximum file size in ROM under MS-DOS on a GRiDCase is 1 MB. On a Compass
running MS-DOS, the maximum file size is 128 KB. The software used to create
MS-DOS ROMs limits the number of files to 512. There is an overhead that

reduces the total amount of space available in a ROM set that is comprised of:

Boot sector = 512 byt:es1
Header = # ROM groups * 512 bytes
FAT sectors = (((# files * 3 / 2) + 511) / 512) * 512 bytes
Sector for each 16 files = ((# files + 15) / 16) * 512 bytes

' If the total ROM size is 128K or less, then the header only occupies 512

bytes.

For the GRiDCase, the directory entries for the files in ROM are appended to
the directory for drive A under version 2.11. This is transparent to the user
and can lead to confusion, since there is no division between the actual
directory for drive A, and the directory for the files in ROM. With version
3.2 of MS-DOS on the GRiDCase, the MODE command can be used to append the
directory entries to drive A or drive B, or disable them entirely. For the
Compass. the directory entries for the files in ROM are appended ta tha first
MS-DOS mass storage device that the initialization sequence encounters.
(Normally this is drive C, the hard disk). ROM files on a hard disk version
of the GRiDCase Plus are appended to the hard disk (drive C) if there are no
floppy drives attached. Files in ROM are always appended to the root
directory, no sub-directories are allowed.

Creating ROMs

The process for creating a ROM under MS-DOS involves four steps:

1) Selecting the files to go into ROM

4-2 Programming EPROMs for GRiDCase and Compass

2) Using ROM Build to create the hex file(s)
3) Transferring the hex file(s) to the PROM Programmer
4) Programming PROMs with the PROM Programmer.

A hex file is an ASCII file that contains the hexadecimal character
equivalents for the bytes in a data file. Hex files created with GRiD'’'s ROM
Build software are patterned after the Intel hex format. The ROM Build
utility is described in detail later in this chapter. If the files being put
in ROM are from a commercially available application, it may be necessary to
do some preparation work on the files before you use ROM Build.

Commercially Available Applications

It is possible to take an application that you have purchased commercially and
put it in ROM. Care must be taken to do it correctly, or the application may
not work. The four areas to examine are installation/configurationm,
extraneous files, copy-protected software, and read/write access of files.
Each of these is described below.

Installation/Configuration

Many applications require you to install them on a diskette or hard disk
drive. In this process you usually configure certain system-related
parameters, such as what printer you are using, the type of monitor you
have, and even what plotter you may have attached. Before you put the
application into ROM, you must go through this configuration process,
because once it is in ROM it cannot be changed.

It is best to follow the manufacturer’s instructions and install the
application on a diskette (or hard disk). Be sure and keep track of the
files that are written to disk. Go ahead and configure the application
per the instructions the manufacturer has given you. You are now ready
to go on to the next step which is eliminating unnecessary files.

Extraneous Files

Most applications have files that pertain to their installation and
configuration that are not necessary to put in ROM. It 1ls often
necessary to eliminate these files so that the application will fit into
a reasonable number of ROMs. These files will have names such as
CONFIGUR.DAT, READ.ME, MONITOR.DAT, PRINTER.DAT, HELP.DAT, INSTALL.EXE,
etc. There may also be sample data files with names like SAMPLE.TXT,
BEGIN,.DAT, etc.

With the application installed, you should start renaming these files one
at a time (to a dummy file name) and then test the application to see if
it runs without the eliminated files. Be sure to test all of the
applicable features of the renamed file before you decide to eliminate
the file. If the application works, the file you just renamed is
probably not necessary. If the application fails, rename that file back
to its correct nama. Continue this process until you have pared the
application down to a reasonable size. Make sure you remember to restore

Creating MS-DOS ROMs 4-3

the renamed files to their original names.

Copy Protection

Many applications are copy-protected by the manufacturer. This can
present problems when trying to put the application in ROM. With the
application installed on a diskette, and the extraneous files eliminated,
write protect the diskette, and then try the application. Usually if the
application works from a write-protected diskette, it will work in ROM.
There are occasions where it will not. The way to set the files to
read-only is by using the ATTRIB command under MS-DOS version 3.2. This

is a very effectiva way of testing an application to see if it will work
in ROM.

If the program does not work, it will be necessary to acquire or produce
a version that is not copy-protected to download into ROM. Various
software techniques exist in the market to produce versions that are not

copy-protected. GRiD does not supply this software. Users should check
with their own legal counsel on these matters.

If you intend to make multiple ROM copies of an application, you should
contact the manufacturer and discuss what is called a site-license. They
will sometimes supply you with a version of their application that is not
copy-protected for you to put in ROM.

Read/Write Access

Many applications open files for read/write access even though they only
need to read them (such as the case of a static configuration file).
Opening a file in ROM for read/write access will give an error since each
file placed in ROM is flagged as being read-only. Opening a file on a
write-protected diskette for read/write access will only give an error
when the file is written to. This is important to remember when moving

an application from disk to ROM, or developing an application for use in
ROM.

MS-DOS ROM Building Software

ROM Build is used to perform a three step process: 1) Select the files to be
input into ROM, 2) Build those files into a hex image, and 3) Transfer the
resultant hex files to a serial PROM programmer. If a PROM programmer with
its own software interface is being used, i.e., the Sailor-8, then the
software supplied with the PROM Programmer would be used to transfer the hex
files, built by ROM Build, to the programmer. Therefore, step 3 would be
eliminated.

ROMBUILD.EXE
ROM Build is a menu-driven utility that allows users to select files to

be placed in ROM, and then transfer the resultant hex file(s) to a PROM
programmer attached to the serial port. It keeps the user informed as to

4-4 Programming EPROMs for GRiDCase and Compass

how much space is available in the ROM, and forces the user to correctly
fill in the required fields to build a ROM. The main menu of ROM Build
is shown in Figure 4-1. The arrow keys move the highlighted rectangle
from one selection to another, and the <RETURN> key is used to confirm
the entire menu.

gegect @!1!3) to be !ncludod in ROM

Create ROM hax filels)
Conﬂzn.rc serial port
g:?g OM hex file(s) to serial PROM Proorammer

Fotl Buaild Ubglpty 3

i e b optoponr o aied press FETURN
Copariabt (o) 190 i E

ShE GRID TSattems Corperat 1o

Figure 4-1. ROM Build Main Menu

Select ROM Options

The first step in the process of putting files in ROM is to set up the

options for the ROM. The options menu of ROM Build is shown in Figure
4-2, Certain fields are optional as noted.

gt Loyl e ar b e

Number of 128K PROMS 9
Number of 64K PROMS 3
Number of

of 32K PROMS (-]
Number of files in ROM 18

Ak 1 ST Db et

Bootable ROM No

Optional ROM name MS-| ROM 9,9/87

Optional ROM part name

Optional ROM copyright ght (¢) 198 ystems poration

10 ot gfd v BE T1iktH

Figure 4-2. ROM Build Options Menu

The first three items in the menu specify how many and which type of
PROMs are being used. Any combination of PROMs may be used.

The specification of the number of files is used to calculate the number
of directory sectors. This number is rounded up to the nearest multiple
of sixteen.

The ROM name, ROM part name (part number) and ROM copyright items are
fields that are placed in the ROM identification area.

If you specify a bootable ROM, ROM Build automatically builds in the boot
sector and displays the menu shown in Figure 4-3. You must specify which
system (GRiDCase or Compass) the ROM is to be used in, since the boot
sectors are different for the two systems (the GRiDCase is PC

Creating MS-DOS ROMs 4-5

compatible). You can optionally specify that the COMMAND.COM file and
the invisible files necessary to boot MS-DOS be included. These system
files are not necessary to make a bootabhle ROM for applications that use
their own operating system, they are only required for MS-DOS. If you
specify that these files are to be included, you will be prompted to
insert a system diskette in the specified drive, and a warning will be
displayed informing you how much space those files require. For MS-DOS
version 2.11 this is almost 58 KB. For MS-DOS version 3.2 this is 66 KB
(note that MS-DOS version 3.2 will not fit in one 64 KB ROM). A boot
prompt key is also solicited (1, 2, 3, or 4). The boot prompt key is the
numeric key to be pressed to boot this ROM (useful if more than one
bootable ROM is installed). This menu is shown in Figure 4-3.

[1erpme lettor yhere tustem f1les Lorated

ROM Systam & GRiDCase

Include COMMAND.COM and systen files ¥
Device containing syscem files _
ROM boot prompt key

Eootsbhle F0ibt o optioms Frll i fevrr@ oand prez-z= FETLRH

Figure 4-3. ROM Build Boot Menu

Once the ROM option menu has been filled in, the next menu that appears
asks for the destination hex file name. Fill in the desired pathname for
the hex files to be generated by ROM Build. The file extension HX1l, HX2Z,
etc. is appended to each hex file created. Make sure there is enough
room on the hard disk for the hex files to be stored. For 64KB and 128
KB ROM hex files, 157 KB and 315 KB of disk space is required
respectively for each hex file.

Select file(s) to be included in ROM

To select a file for inclusion in ROM, you can select a drive from the
file form, or a particular file from the currently selected drive. (The
file form is what is displayed on the screen when the Select File(s) to
be Included in ROM option is chosen from the main menu.) Wildcards are
allowed.

Files that are hidden from the directory can also be included in ROM.

The pathname for each hidden file must be typed in as these filenames are
not visible in the directory. (Hidden files will not be included when
wildcards are specified.) The file selection menu is shown in Figure
4-4,

4-6

Programming EPROMs for GRiDCage and Compass

AN FORMAT . COM SYS.CoM

B\ GRAFTABL . COM TREE.COM
C:\ GRAPHICS.COM UDISK.SYS
D:\ KEYBFR.COM
1\ KEYBGR.COM
KEYBIT.COM
ANSI.S KEYBSP . COM
ASSIGN.COM KEYBUK . COM
ATTRIB.EXE LABEL .COM
BACKUP . COM MODE . COM
BASIC.COM MORE . COM
BRSICA.COM PCMASTER. SYS
CHKDSK . COM PCSLAVE . EXE
COMMAND . COM PRINT.COM
COMP . COM RECOVER.COM
DISKCOMP . COM RESTORE.COM
DISKCOPY . COM ROMBUILD.OBJ
EDLIN.COM SELECT.COM
FOISK.COM SHARE . EXE
SORT .EXE
Path: A:\%x.X

Eotiles 20 b0 be 1o hodead om FOIRE ared g o FETHRFN

Fresz ThB ta =it path f1eld
Figure 4-4. ROM Build File Select Menu

As you select files to be included in the ROM, ROM Build displays each
filename, its size and last-modified date and time, the amount of space
left in the ROM, and the files already included. You then have the
option of including the file or not. A sample of this verification form
is shown in Figure 4-5.

Files currently included: ASSIGN.COM BACKUP .COM CHKDSK .COM
DEVICES.EXE DISKCOPY.COM EDLIN.COM

There are 105984 bytes available in ROM

Fila: A:\FC.EXE ¢
File size: 2583 Last modified: 18-19-83 7:5ipm

NO ALL EXIT
Include file in ROM

R N S R N R T L S Y R R A I R I I T A E

Figure 4-5. ROM Build Verify Include File Form

The ALL and EXIT options are only displayed if you have specified a
wildcard in the filename. ALL indicates that all files matching the

Creating MS-DOS ROMs 4-7

wildcard specification are to be included. EXIT allows you to end the
inclusion of files and return to the main menu where you can continue
selecting files or build the hex file.

Create ROM hex files

Once you establish the desired list of files, you would then build the
hex files by selecting the Create ROM Hex File(s) choice from the ROM
Build Main menu. The checksums for each hex file are displayed at this
point. You should copy them down for future reference against the
checksums of the resulting PROMs programmed on your PROM programmer.
Once all the hex files are built, you can transfer them to the PROM
programmer through the serial port. 1If you are using the Sailor-8 PROM
programmer, you should now exit from ROM Build and use the software that
accompanies the Sailor-8 (see Appendix C).

Configure serial port

A configuration menu is available to initialize the serial port; to set
the baud rate, data bits and stop bits values that are necessary to
communicate to your serial PROM programmer. At this point the user
should prepare the PROM Programmer as instructed by the programmer’s
reference manual. If the DATA I1/0 PROM programmer is being used, refer
to Appendix C.

Send ROM hex file(s) to serial PROM Programmer

Once the serial port has been configured and the PROM programmer is ready
to receive data, select the main menu choice of "Send ROM hex file(s) to

serial PROM Programmer". Fill in the form with the hex files that are to
be sent to the programmer. As each hex file is sent, a percent complete

message 1s displayed for your convenience. When the transfer of the hex

file is complete, a screen is displayed as a reminder to label the PROMs,
verify the checksums, etc.

Chapter 5: Creating GRiD-OS ROMs

The maximum file size in ROM under GRiD-0S is 128 KB. There is a
practical limit to the number of files you can place in a 128 KB ROM of
2026. The reason is that the smallest allocation unit for GRiD-0S files
is 256 bytes (the size of a sector). There is an overhead that reduces
the total amount of space available in a ROM set that is comprised of:

Sector 0 = 256 bytes
Header = 256 bytes
Sector per file = (# files) * 256 bytes
Sector per file > 5 KB = (# files > 5 KB) * 256 bytes
Sector per file > 70 KB = (# files > 70 KB) * 256 bytes

Directory = ((Len file names + (3 * # files)) / 256 + 1) * 256 bytes

Files in ROM under GRiD-OS can be executable from ROM or draggable
(loaded into main memory). Draggable and executable files can be mixed
within one ROM set. The directory entries for the files in ROM appear in
a device called "Read Only Memory", in the subject "Programs".

Occasionally it is necessary to transfer GRiD-0S hex files to MS-DOS
media via GRiDTransfer in order to take advantage of download software
specific to the PROM programmer you are using (such as a One-D Sailor 8
programmer). Many manufacturers of PROM programmers have taken an MS-DOS
software-interface approach to communicating with their programmers.

Creating a ROM set involves selecting the files and calculating the space
required for them. By using the formula above to calculate the overhead,
and knowing that a file occupies a minimum of one sector (256 bytes), you
can determine the size of ROM space necessary for the group of files you
want to put in ROM. You then proceed with ROM Builder-~Task~ which is
described later in this chapter. The program will build the hex files
and optionally send them through a "termulator" (terminal emulator) to a
PROM programmer.

5-2

Programming EPROMs for GRiDCase and Compass

In certain instances, you may have to use ROM Builder~Run~ and PROM~Run~
directly instead of using the ROM Builder-Task~ interface to create the
hex files. Both of those utilities are described later in this chapter
as well.

If you have a PROM programmer that requires a parallel interface or a
PC-based MS-DOS interface, you should not use the termulators; instead
use GRiDTransfer to copy the hex files to MS-DOS media on a PC or

GRiDCase, where you can use MS-DOS software to download them to your PROM
programmer.

GRiD-0S ROM Software
Transferring GRiD-0S files into ROM is a four step process:

1) Combining the desired files into a ROM image

2) Translating the ROM image into an Intel hex format file
3) Transferring the hex file to the PROM programmer

4) Programming the PROM using a PROM Programmer

This process is {llustrated in Figure 5-1.

Occasionally it is necessary to transfer GRiD-OS hex files to an MS-DOS
system via GRiDTransfer in order to take advantage of download software
specific to the PROM programmer you are using (such as a One-D Sailor 8
programmer). Many manufacturers of programmers have taken a
software-based programmer control approach, and have selected MS-DOS as
the vehicle.

In addition to the software that is specific to building ROMs, there are
a variety of other utilities supplied by GRiD that are useful in
preparing files for ROM building. They are documented elsewhere, and are
mentioned here just to establish their existence.

GRiDwrite Text editor used to manipulate map files from LINK-86 and
output files from ROM Builder.

GRiDFile Database application used to sort data from map files.

GRiDDevelop Menu driver interface to the development process. Invokes
compilers, linkers and other utilities needed when
developing software.

GR1iDTerm Termulator used to transfer files to PROM programmers.

GRiDTransfer Utility to transfer files from GRiD-0S to MS-DOS. This
step is necessary if the PROM programmer you are using has
an MS-DOS programmatic interface (such as the Sailor-8).
Works from one media to another media (not across serial
ports).

Note: To transfer GRiD-0S files to MS-DOS with

Creating GRiD-0S ROMs 5-3

GRiDTransfer, select the option, GRiD-0S to MS-DOS - No
Conversion from the GRiDTransfer menu.

The utilities described in the following sections are provided for use
with the ROM Build software and for the convenience of the application
programmer. They are not supported as' individual products.

ROM Builder~Task~

The ROM Builder task program is a menu and form driven interface to the
ROM Builder~Run~ and PROM~Run~ programs, as well as the termulator
connection to the PROM programmer or to GRiDTransfer. It leads the user
through the necessary steps to place files in ROM. The maximum size of
the ROM package is 128 KB. ROM Builder~task~ requires 512 KB of memory,
GRiDTask (or GRiDTask II), and a hard disk to execute.

The ROM Builder task program is intended for use by less demanding
application developers who only want to put files into a ROM. It does
not produce bootable ROMs, nor does it allow designating a part number.

The main menu is displayed as follows:

o M Builder

= .
Transfer Hex Files to Programmer
Create ROM Hex Files

Transfer Hex Files to MS-D0OS
Exit

Flavie Mg Te=lect atem and contirm

Figure 5-2. ROM Builder Main Menu

5-4 Programming EPROMs for GRiDCase and Compass

V;
/ /
/ ROM Builder~Run~ /
/ /
v,

v
~

A\
PROM programmer

Figure 5-1. PROM Programming Process

Creating GRiD-OS ROMs 5-5

The ROM Builder task program always uses the same names for ROM image and
ROM hex files (ROM-IMACE- and ROM~HEXn-, where "n" is a single digic).
These files will be placed in the device and subject from which ROM
Builder is executed. If you repeat the ROM Builder task program, the
previous image and hex files will be erased and over-written.

The ROM Builder task program is designed to be self-explanatory, so no
detailed description of it is included here. If you wish to modify the
task program, the source code has been included on the diskette
accompanying this manual. The following two sections describe in detail
the programs that are executed by the ROM Builder task program. When
executing ROM Builder task, it is important to pay very close attention
to the other utilities that it is managing. Errors within the
termulators, GRiDTransfer, etc. are not trapped by the ROM Builder task.
The user is responsible for noting any errors and taking corrective
action.

ROM Builder~Run~

Depending on your expertise and the situation, it may be more effective
to forego the ROM Builder task program and incorporate the necessary ROM
building steps into a GRiDDevelop file for the application. This allows

specification of all of the options listed below (ROM Builder~Task~
allows a pre-determined subset). This step can be complicated, and should
only be taken if you are comfortable working with GRiDDevelop files. The
command invocation for ROM Builder is:

ROM Builder (filespec) [,{(filespec}]... TO (image pathname)
[options]

where: (filespec) is "{pathname) [((segname}[,(segname}]...)]", the
optional (segname) parameter designates the code groups of an
executable file. ("CGROUP" for a single subsystem
application.)

{image pathname) designates the destination file of kind
~Image~.

[options] include:

RomID({number)) 5001 through 32767
Part(’'(string}’) 9 characters ("nnnnnn-nn")
RomSize((number)) 32, 64, 128

WaitStates({number})) must be set to three

NumRoms ({ number)) 1 through 8

SystemRom indicates a bootable ROM
Invisible non-file system binary file
Print({pathname)) redirects screen output to a file

Options are separated by spaces. For more details on the first six
options, see Appendix D. The invisible option specifies that the files
being placed in ROM are not to be added to the file system. The
application is responsible for manipulating this data. All files placed

5-6 Programming EPROMs for GRiDCase and Compass

in ROM are in the Programs subject.

PROM~Run~

The PROM program takes the ROM~image~ file that is generated by ROM
Builder~Run~ and creates the ROM~hex~ file(s) necessary to burn the PROMs
themselves. For a 64 KB ROM, the hex file created occupies 184 KB on the

disk. Be sure you have enough disk storage before beginning the hex file
creation process. The command invocation is:

PROM (image pathname) ({number))

where: (image pathname) is the same name as the output file from ROM
Builder

{number) is the size in KB of the PROMs to be programmed (32,
64 or 128)

The PROM program generates one or more hex files depending on the size of
the image file. The output files have the same title as the image file,
but have a kind of ~HEX1~, ~HEX2~, etc. PROM displays the checksums of
the original image file and the resultant hex file. If these two
checksums are not equivalent, an error has occurred, you should check
your work, and repeat the process.

WVavetek~Terminal~

This is a termulator configuration file used with GRiDTerm to communicate
hex files to a Wavetek 824 PROM programmer. It is invoked from within
ROM Builder~Task~. 1t is set up for 9600 baud, 8 data bits, 1 stop bit,
full duplex, no parity. It could be used for other PROM programmers that
have a similar serial interface.

Datal/O~Terminal~

This is a termulator configuration file used with GRiDTerm to communicate
hex files to a Data I/0 121 or 29A PROM programmer. It is invoked from
within ROM Builder-Task~. It is set up for 9600 baud, 8 data bits, 2
stop bits, full duplex, no parity. It could be used for other PROM
programmers that have a similar serial interface. See Appendix C for
more information on the Data 1/0 programmer.

Other~Terminal~

This is a termulator configuration file used with GRiDTerm to communicate
hex files to a generic PROM programmer. It is invoked from within ROM
Builder~Task~. It is set up for 9600 baud, 8 data bits, 1 stop bit, full
duplex, no parity.

Appendix A - Handling EPROMs

Static Damage

EPROMs, like all integrated circuits, are susceptable to damage from
static electricity. Always ground yourself before handling them. To
further eliminate any possibility of damaging the EPROMs, handle only
from the ends, without touching the leads (or "legs").

The EPROM programmer operator should be grounded at all times with a
wrist strap. This wrist strap should be tied to an earth ground through
a one-megohm resistor. Wrist straps are available from CharlesWater,
part number CP40S. CharlesWater can be reached at (617)964-8370 (East
Coast), (818)502-1453 (West Coast) or (0892)31012 (England).

The EPROM programmer work space should be grounded with a static control
table and/or floor mat that is connected to an earth ground. These
grounding mats are also available from CharlesWater, part numbers CP604
and CP603 respectively.

Anti-static containers should be used to house the EPROMs both before and
after programming. This is true of both crimped and uncrimped EPROMs.

Ultraviolet Light Damage

EPROMs are also susceptable to damage from ultraviolet light after they
are programmed. EPROMs are erased with a high-intensity UV light, but
can be damaged (partially erased) by lower intensity UV light, such as
sunlight or light from flourescent fixtures. Make sure that you always
afix a label to the EPROM that completely covers the window.

A-2

Programming EPROMs for GRiDCase and Compass

Erasing EPROMs

There are special devices made for erasing EPROMs that emit
high-intensity ultraviolet light. Before inserting EPROMs into the
chamber, make sure you have completely removed the label and any glue
residue from the window. When you place the EPROMs in the chamber, make
sure that the window is in full view of the UV light source. Depending
upon the manufacturers instructions, you should leave the EPROMs in the
chamber for 20 to 40 minutes. EPROMs that have been programmed and
erased several times may require a full 60 minutes to erase. Be careful
not to over-erase.

Diagnosing Failed EPROMs

Using a PROM programmer, blank check the EPROM. 1f the check fails,
follow the directions above for erasing it, and blank check it again. If
the check still fails, the EPROM is bad. If the blank check is
successful, program the EPROM. If programming fails at byte 0, the EPROM
is bad. If the programming goes to completion, and upon examining the
EPROM’s contents you find all the bytes the same, the EPROM is bad. 1If
the same EPROM consistently comes up with a bad checksum, then the EPROM
is bad. Failed EPROMs, if new, should be returned to the distributor for
replacement. Failed EPROMs, if re-used several times, should be
discarded.

Appendix B - GRiD Part Numbers for EPROMs

QUANT PART DESCRIPTION

1 Crimped 64KB EPROM
15 Crimped 64KB EPROMs
1 Uncrimped 64KB EPROM
15 Uncrimped 64KB EPROMs
1 Uncrimped 128KB EPROM
10 Uncrimped 128KB EPROMs
5 Molex sockets (for crimped 28 pin ROMs)
10 ROM carriers (to crimp 28 pin ROMs into)
1 Internal 28 pin ROM board (GRiDCase)

PART #

24200
24202
24201
24203
24204
24205
24210
24211
101412

Appendix C - PROM programmers

A variety of PROM programmers are commercially available. This appendix
provides some background information on generic serial programmers, and
some helpful information on three specific PROM programmers. The
appendix is outlined as follows:

1) Generic serial programmers
2) DATA I/0 programmer

3) Sailor-8 programmer

4) EPRO programmer

Generic serial programmers

The term generic is intended to mean that the PROM programmer being used
does not require any programmatic interface. The most common kinds of
PROM programmers include the Data I/0 29A, Data I/0 121, Prolog 912A, and
the Wavetek 824. These PROM programmers expect to receive an Intel hex
file via the serial port. All other set-up or configuration data is
entered through a control panel on the PROM programmer itself.

You communicate with serial PROM programmers using termulators under
GRiD-0S. With the termulators, you can create terminal data files with
the exact parameters for your programmer (such as the Datal/O~Terminal-
and Wavetek~Terminal~ files described in Chapter 5). Under MS-DOS,
ROMBUILD has a "Send ROM hex file(s) to PROM programmer" option to
transfer hex files to your PROM programmer.

C-2 Programming EPROMs for GRiDCase and Compass

DATA I/O PROM programmer

The following is a step by step procedure that should be followed to burn
EPROMs on the DATA I/O Serial PROM programmer.

1.
2.

Build hex file(s) using the ROMBuild program.

Prepare to transfer files to the DATA I/O PROM programmer by
selecting the "Configure serial port" option on the main menu and
configuring the serial port as follows:

BAUD = 9600

Parity = None
Stop Bits = 2
Data Bits = 8

Prepare the DATA I/0 PROM programmer as follows:

a) Connect the PROM programmer cable to the serial
port on your system

b) Turn on the PROM programmer

c) At the PROM programmer, press the following keys
in the EXACT order listed:

SELECT 1 4 SHIFT2-BACKSPACE START O START

Select the "Send ROM hex file(s) to serial PROM programmer”
selection at the main menu and select a hex file (or files using
wild cards) to send hex files to the PROM programmer. The file
to be sent to the PROM programmer is displayed and a message
prompts the user to press RETURN to send the hex file to the PROM
programmer.

Before sending the HEX file into the PROM programmer, enter the
following commands at the DATA I/0 PROM programmer:

LOAD LOAD START 8 3 START
Press RETURN at the system keyboard to begin sending the hex file
to the PROM programmer. Watch for the clock to turn on the PROM
programmer display. If the clock does not turn, data is not
being transmitted and the connection between your system and the
PROM programmer should be checked.
Programming a PROM at the PROM programmer:
Start programming the PROM by entering the following commands on
the PROM programmer:

PROG START partSequence START’

the part Sequence for part number AM27512:

SHIFT3-7 1 SHIFT-7 &4

the partSequence for part number AM27256:

Appendix C C-3

SHIFT3-7 1 3 2'

Ingert a PROM into the PROM programmer, and press START START
on the PROM programmer.

NOTE: Programming should begin. Once again, the clock on
the PROM programmer display should turn. If the clock does
not turn, reenter the commands listed above on the PROM

programmer making sure the part sequence number was entered
correctly.

6. Repeat steps 5 and 6 to continue sending hex files to the DATA
I/0 PROM programmer.

7. After all hex files have been sent to the PROM programmer, and
after all the PROMs have been programmed:

1) Remove the PROM from the PROM programmer
2) Power off the system

3) Insert PROMs into your system

4) Turn on your system and verify the PROM programming
is correct

5) Label each PROM with date, checksum and version
number

Sailor-8 PROM programmer

The Sailor-8 PROM programmer from the ONE/D Corporation allows users to
program a wide variety of EPROMs. The Sailor-8 programmer will program
both 28 pin 64 KB and 32 pin 128 KB EPROMs. An adapter card must be
purchased in addition to the Sailor-8 to support the 32 pin EPROMs.
Contact ONE/D for more information at:

ONE/D
1050 L East Duane Ave.
Sunnyvale, CA 94086

(408)969-9900

The Sailor-8 has a parallel communications interface which offers a
higher speed of transfer than the serial interface. Instead of a control
panel user interface, the Sailor-8 uses a programmatic user interface
that runs under MS-DOS. It utilizes Lotus 1-2-3 style menus for
interactive operation, and also has a macro interface for repetitive
operations. It requires a minimum of 256 KB of memory. It can program a
single PROM, a set of PROMs or a "gang" of the same PROM. You can
download a hex file through the parallel interface and then program PROMs
from the buffer, or you can copy a master PROM into the buffer, and then
program PROMs from that.

A few things to be aware of when operating the Sailor-8:

C-4 Programming EPROMs for GRiDCase and Compass

o

o

Do not turn the Sailor-8 on or off with PROMs in the sockets.

Connect the GRiDCase to the Sailor-8. Power on the GRiDCase, then
the Sailor-8.

Insert PROMs with the notch towards the top (back) of the
Sailor-8.

If you have purchased your PROMs from GRiD, make sure you use chip

. type #7 in the configuration menu. This is an Intel or AMD 27512

(64 KB) EPROM that expects a programming voltage of 12.5 volts.
Chip type #8 is also a 27512, but will destroy the GRiD-supplied
27512s because it uses a different voltage (20 volts). If you
have purchased your PROMs from a source other than GR1iD, make sure
you configure the Sailor-8 correctly for the chip type you have.
Programming of the PROMs may appear to work, but if the proper
personality code isn’t used, problems are likely to develop.

The main menu screen of the Sailor-8 software offers the following
options: '

Configure

File

Buffer
Release-Control
PROM

Macro

Use the Configure option to change the following defaults:

Field Name Default Correct Setting

Porxt LPT1 LPT2
Chip-Type 8K PROM 64K PROM, 12.5 V
Set-Size 8 1

Once the configuration settings.have been changed to their proper
settings, follow the next five steps to program one 27512K (64KB) EPROM:
(Refer to the Sailor-8 documentation for more complex operations.)

1.

Use the File/Name option to enter the filename of the hex file you
want to program into PROM. Thig ig¢ the file that was output from
GRiD’s ROMBuild software.

Escape back to the main menu. Use the Buffer/Load/0 option to
load the hex file into buffer zero.

Escape back to the main menu. Use the Prom/Blank/0O option to
verify the PROM you want to program is blank. (Make sure when
inserting the PROM into the programmer that the notch is on the
top end of the chip).

Use the Prom/Program/0 option to begin programming your PROM.

Appendix C ¢-5

5. Once the PROM is programmed, verify the checksum on the PROM with
the Prom/Checksum/0 option. This checksum should match the
checksum of the hex file that was given to you from the ROMBuild
software when the hex file was created.

Note: When programming more than one buffer (such as is necessary
for a set of ROMs), you must load each hex file to buffer zero and
do a "Buffer/Duplicate” command to transfer the data to the
desired buffer. Make sure the set size has been set to one before
attempting this operation.

The manual that accompanies the Sailor-8 more fully describes the
other commands, options and macro capabilities that are available.

EPRO PROM programmer

EPRO Corporation offers the EPRO 4000, a PROM programmer which allows
users to make master 128KB 32 pin EPROMs. These EPROMs can only be used
in GR1iD computers which have the capability of handling the 32 pin
EPROMs. The EPRO 4000 also allows duplication of 128KB EPROMs, one PROM
at a time.

The EPRO 4000 comes with a programmer, an expansion card (to be installed
inside a GRiD Expansion Box or an IBM PC), and software. The EPRO
software requires an Intel Hex file in order to make a PROM. Therefore,
customers must first use GRiD’s EPROM software (GRiD-0S or MS-DOS) to
create the Hex file before using the EPRO Programmer. The EPRO software

loads the Hex file into memory, manipulates the data, and burns the
result into the EPROM in the programmer.

For more information, contact EPRO at:

EPRO Corporation
2342 Harris Way
San Josea, CA 95131

(800)433-EPRO
(800)262-EPRO
(408)433-5555

Appendix D - ROM Structure

The information in this appendix 1s included for the more technically
oriented user of the EPROM Programming Kit. If even more technical
information is required, contact your GRiD Representative.

The ROM header is always located in the last 256 bytes of the ROM. When
the ROM is mapped in, the header is located at segment 9FFOh in memory,
regardless of the size of the ROM. A 128 KB ROM starts at memory
location 8000h (just above the 512KB of system RAM). A single 64 KB ROM.
starts at memory location 9000h. A single 32 KB ROM starts at memory
location 9800h. A diagram of ROM mapping is given in Figure D-1.

It is possible for one set of files to span multiple ROMs. In the case
of the Compass and the GRiDCase external ROM sockets, 64 KB EPROMs are
the largest capacity EPROMs that can be used. Two 64 KB EPROMs (or four
32 KB EPROMs) can be mapped into memory as a package, occupying the

entire 128 KB of memory available for ROMs. That mapping is shown in
Figure D-2.

D-2 Programming EPROMs for GRiDCase and Compass

A000:0h -----cccceces eiiiicciacs aeieiiiaaaas
9FF0:0h

9800:0h

64KB ROM

|

I

I

|

I

I

I

I

I
9000:0h |
I

[

|

I
8800:0h |
|

I

I

I

8000:0h ----ccec---.
128KB ROM

Figure D-1. Memory Mapping of a Single ROM

A000:0h cec-cccccciace ceecccccasss
9FF0:0h

|
I
|
9800:0h |
I
I
I
I

9000:0h j---c-ccc-v-- |

I
|
|
I
8800:0h |
|
|
I
|

8000:0h -c-c-eccacace eemmeemnens
64KB ROMs 32KB ROMs

Figure D-2. Memory Mapping of a ROM Package
Note: There is only one ROM header per package.

A single large file or group of files that exceeds 128 KB is stored in
multiple ROMs, known as a group. Each ROM in the group has its own

Appandix D D-3

header. Groups are available under MS-DOS only.

ROM Header

The ROM header contains three kinds of information: identification
fields, bootstrap fields and directory fields. The organization of the
data in the ROM header is given in Figure D-3. The "ID", "BOOT", and
"DIR" columns indicate what kind of informatior is contained in the
field. A more complete description of these field types is given in the
three sections following this table.

ADDRESS OFFSET FIELD NAME LENGTH ID BOOT DIR
9FF0:0h 00h romHereFlag 2 *

9FF0:2h 02h sysType 1 *

9FF0:3h 03h systemRom 1 *
9FF0:4h 04h bootSector 2 *
9FF0:6h 06h romAddr 1 *

9FF0:7h 07h romSize 1 *

9FF0:8h 08h waitStates 1 *

9FF0:%h 0%h dirSelector 2 *
9FF0:Bh 0Bh dirlength 2 *
9FFO0:Dh Obh nunFiles 2 *
9FF0:Fh OFh pageZeroSelector 2 *
9FFl:1h 11h totNumPages 2 *
9FF1:3h 13h romId 2 *

9FF1:5h 15h copyRight 45 *

9FF4:2h 42h time 11 *

9FF4 :Dh 4Dh partNumber 9 *

9FF5:6h Séh partName 15 *

9FF6:5h 65h bootLength 1 *
9FF6:6h 66h bootMessage 30 *
9FF8:4h 84h bootId 1 *
9FF8:5h 85h numRomsInPkg 1 *

9FF8:6h 86h romSumsArray (4) 8 *

9FF8:Eh 8Eh romIdText 50 *

9FF8:Fh 8Eh unused 60

9FFF:Ch FCh numRoms InGroup 1 *

9FFF:Dh FDh groupSequenceld 1 *

9FFF:Eh FEh patchCodeFlag 1 *

9FFF:Fh FFh checkSum 1 *

Figure D-3. ROM Header

D-4 Programming EPROMs for GRiDCase and Compass

ROM Identification Filelds

romHereFlag

sysType

romAddr
romSize
waitStates

romId

copyRight

time

partNumber

partName

numRoms InPkg

romSumsArray

romIdText

numRoms InGroup

Set to BB66h to indicate presence of ROM header.

Identifies the operating system the ROM is designed
for. A value of 0 indicates a GRiD-0S ROM, and a
value of 1 indicates an MS-DOS ROM. Values up to 80h
are reserved for GRiD use.

Set to zero (0).
Size of ROM in 1 KB units (32, 64, 128).
Set to three (3).

A 2-byte value that uniquely identifies this ROM.
Values 0 through 5000h are reserved for GRiD use.

A 45 character ASCII field for copyright information.

An 11 byte field that contains a time/date stamp
identifying when the ROM was made. The bytes are
defined as follows:
0,1 year
month
day
hour
minute

3
4
5
6 seconds
7
8
9

N

hundredths of seconds
day of week (not used)
,10 day of year (not used)

A 9 byte ASCII field that contains the part number.
GRiD part numbers are formatted as ’‘nnnnnn-nn’.

A 15 byte ASCII field that contains " <- Part
Number®.

If the total ROM size is less than 128 KB and the hex
file spans multiple ROMs, then the ROMs are known as
a package. This is the number of ROMs in the
package.

A four word array that contains the individual
checksums of the ROMs in the package.

A 50 byte string identifying this package.
If the total ROM size is greater than 128 KB, then

the ROMs are known as a group. This is the number of
ROMs in the group. (MS-DOS only.)

groupSequenceld

patchCodeFlag

checkSum

. Appendix D D-5
For a group, each ROM has its own header. This field
indicates the sequence number of this ROM in the
group. (MS-DOS only.)
Always false.

A single byte checksum of all of the ROMs represented
by this header (a package).

ROM Bootstrap Fields

systemRom

bootSector

bootLength

bootMessage

bootld

A value of 80h identifies a bootable ROM.

A word value to add to 8000h to create a segment
address of the boot sector.

Length of the boot message.

A 30 byte ASCII message. This message will only be
displayed if there is more than one bootable ROM
available. In that case the user is prompted with
the boot messages.

Integer number the user would enter to select between
bootable ROMs. For the convenience of the user the
boot message should indicate what this number is.

ROM Directory Fields

dirSelector

dirlength
numFiles

pageZeroSelector

totNumPages

A word value to add to 8000h to create the segment
address of the first directory sector.

Number of paragraphs in directory.
Number of directory entries.

A word value to add to 8000h to create the segment
address of the first data sector.

Number of data sectors in ROM.

Glossary

bootable

checksum

copy-protection

crimped

draggable

EPROM

executable

Glossary G-1

The contents of the ROM are organized such that a
predefined area of the ROM is loaded into the boot
space in memory and then executed when the system
boots. The rest of the contents of the ROM can be
draggable or executable.

A byte-wide sum of all of the bytes within a file. Used

to verify that a file has been copied correctly from
one device to another.

Many commercially available applications have had the
distribution media marked in some way to prevent
illegal copies from being made. There are many
different schemes to copy protect software, and only
soma of them cause problems in ROM.

An integrated circuit (IC), such as a ROM, that has
been inserted into a carrier and had its leads crimped
to hold it to the carrier. Crimped ROMs are used in
the external ROM slots on GRiDCase or Compass.

The contents of the ROM are organized as files with
directory entries. They can be read into memory and
executed there. The files are read only, and cannot be
modified until they are in memory.

Erasable Programmable Read-Only Memory. The IC can be
erased and re-used.

The contents of the ROM are organized as executable

external

FAT

gang

group

header

hex file

internal

KB

masked ROM

MB

package

paragraph

PROM

ROM

ROM image

sector

G-2 Programming EPROMs for GRiDCase and Compass

files. They are executed within the ROM's memory
space, and cannot be modified at all.

The ROM sockets located above the keyboard under a
small metal cover on both the Compass and GRiDCase.

File Allocation Table. Aﬁ area of an MS-DOS disk
device that contains mapping information about where
the sectors that compose files are stored.

A set of PROMs to be programmed all with the same data
on a PROM programmer.

A feature under MS-DOS that allows file(s) to span the
128 KB boundary of ROM memory space by occupying more
than one ROM. Each ROM in the group has its own
header.

A 256 byte area reserved at the top of ROM memory space
(offset 9FFOh) that contains information about the ROM
and its contents.

An ASCII file that contains the hexadecimal character
equivalents for the bytes in a data file. Intel format
hex files.

The ROM sockets located inside the GRiDCase enclosure
on a separate printed circuit board.

Abbreviation for kilobyte (1024 bytes).

A photo-resist masking process used in making a
programmed memory device.

Abbreviation for megabyte (1,048,576 bytes).

A set of ROMs mapped together into the 128 KB ROM
memory space. Only one ROM header exists for a
package.

16 bytes of memory.

Programmable Read-Only Memory. The IC is a masked part
and cannot be erased or changed.

Read-Only Memory. Used as a generic designation for
PROMs and EPROMs in this manual when no differentiation
is necessary between erasable and non-erasable parts.

An intermediate file in the process of creating a hex
file. Output from RomBuilder-Run~.

Under MS-DOS this 1s 512 bytes, under GRiD-0S this is
256 bytes.

set

site-license

socket

slot

termulator

uncrimped

under the hood

Glossary G-3

A group of ROMs used together as a single unit. Mapped
together in one contiguous memory space.

A relatively new concept in licensing software, where
one company has the right to make multiple copies of a
licensed application within one locale.

A plastic receptacle located on a printed circuit board
that has electrical contacts suitable for insertion of
a ROM.

Refers to a ROM package's physical location within the
sockets in a Compass or GRiDCase. A slot will occupy
more than one socket if multiple ROMs are used to
comprise a package.

A terminal emulator used to transfer files via a serial
port connection.

A ROM that has not been inserted into a carrier, and
consequently still has its leads straight, ready for
insertion into a socket on a printed circuit board.

Inside the enclosure of the GRiDCase (or Compass). The
location of the internal ROM board on the GRiDCase.

	Title page
	Contents
	About This Manual
	Ch 1: Introduction/Overview
	Ch 2: GRiDCase ROM Capability
	Ch 3: Compass ROM Capability
	Ch 4: Creating MS-DOS ROMs
	Ch 5: Creating GRiD-OS ROMs
	Appendix A: Handling EPROMs
	Appendix B: GRiD Part Numbers for EPROMs
	Appendix C: PROM programmers
	Appendix D: ROM Structure
	Glossary

